Filters : "Advances in Geometry" Limpar

Filters



Refine with date range


  • Source: Advances in Geometry. Unidade: ICMC

    Subjects: SUPERFÍCIES DE RIEMANN, FUNÇÕES ALGÉBRICAS, CURVAS (GEOMETRIA)

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDÓN, Miriam e QUOOS, Luciane e BORGES FILHO, Herivelto Martins. Weierstrass points on Kummer extensions. Advances in Geometry, v. 19, n. 3, p. 323-333, 2019Tradução . . Disponível em: http://dx.doi.org/10.1515/advgeom-2018-0021. Acesso em: 07 out. 2022.
    • APA

      Abdón, M., Quoos, L., & Borges Filho, H. M. (2019). Weierstrass points on Kummer extensions. Advances in Geometry, 19( 3), 323-333. doi:10.1515/advgeom-2018-0021
    • NLM

      Abdón M, Quoos L, Borges Filho HM. Weierstrass points on Kummer extensions [Internet]. Advances in Geometry. 2019 ; 19( 3): 323-333.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2018-0021
    • Vancouver

      Abdón M, Quoos L, Borges Filho HM. Weierstrass points on Kummer extensions [Internet]. Advances in Geometry. 2019 ; 19( 3): 323-333.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2018-0021
  • Source: Advances in Geometry. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA DIFERENCIAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ICHIKI, S et al. Generalized distance-squared mappings of the plane into the plane. Advances in Geometry, v. 16, n. 2, p. 189-198, 2016Tradução . . Disponível em: http://dx.doi.org/10.1515/advgeom-2015-0044. Acesso em: 07 out. 2022.
    • APA

      Ichiki, S., Nishimura, T., Sinha, R. O., & Ruas, M. A. S. (2016). Generalized distance-squared mappings of the plane into the plane. Advances in Geometry, 16( 2), 189-198. doi:10.1515/advgeom-2015-0044
    • NLM

      Ichiki S, Nishimura T, Sinha RO, Ruas MAS. Generalized distance-squared mappings of the plane into the plane [Internet]. Advances in Geometry. 2016 ; 16( 2): 189-198.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2015-0044
    • Vancouver

      Ichiki S, Nishimura T, Sinha RO, Ruas MAS. Generalized distance-squared mappings of the plane into the plane [Internet]. Advances in Geometry. 2016 ; 16( 2): 189-198.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2015-0044
  • Source: Advances in Geometry. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, VARIEDADES KAHLERIANAS, GEOMETRIA SIMPLÉTICA, VARIEDADES COMPLEXAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANCIAUX, Henri e GEORGIOU, Nikos. Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para-Kähler manifolds. Advances in Geometry, v. 14, n. 4, p. 587-612, 2014Tradução . . Disponível em: http://dx.doi.org/10.1515/advgeom-2014-0002. Acesso em: 07 out. 2022.
    • APA

      Anciaux, H., & Georgiou, N. (2014). Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para-Kähler manifolds. Advances in Geometry, 14( 4), 587-612. doi:10.1515/advgeom-2014-0002
    • NLM

      Anciaux H, Georgiou N. Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para-Kähler manifolds [Internet]. Advances in Geometry. 2014 ; 14( 4): 587-612.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2014-0002
    • Vancouver

      Anciaux H, Georgiou N. Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para-Kähler manifolds [Internet]. Advances in Geometry. 2014 ; 14( 4): 587-612.[citado 2022 out. 07 ] Available from: http://dx.doi.org/10.1515/advgeom-2014-0002
  • Source: Advances in Geometry. Unidade: ICMC

    Subject: SINGULARIDADES

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUOSI, Marcelo e IZUMIYA, Shyuichi e RUAS, Maria Aparecida Soares. Total absolute horospherical curvature of submanifolds in hyperbolic space. Advances in Geometry, v. 10, n. 4, p. 603-620, 2010Tradução . . Acesso em: 07 out. 2022.
    • APA

      Buosi, M., Izumiya, S., & Ruas, M. A. S. (2010). Total absolute horospherical curvature of submanifolds in hyperbolic space. Advances in Geometry, 10( 4), 603-620. doi:10.1515/advgeom.2010.029
    • NLM

      Buosi M, Izumiya S, Ruas MAS. Total absolute horospherical curvature of submanifolds in hyperbolic space. Advances in Geometry. 2010 ; 10( 4): 603-620.[citado 2022 out. 07 ]
    • Vancouver

      Buosi M, Izumiya S, Ruas MAS. Total absolute horospherical curvature of submanifolds in hyperbolic space. Advances in Geometry. 2010 ; 10( 4): 603-620.[citado 2022 out. 07 ]
  • Source: Advances in Geometry. Unidade: IME

    Subject: GEOMETRIA GLOBAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASPERTI, Antonio Carlos e VALÉRIO, Barbara Corominas. Ruled Weingarten hypersurfaces in Sn+1. Advances in Geometry, v. 8, n. 1, p. 1-10, 2010Tradução . . Disponível em: https://doi.org/10.1515/ADVGEOM.2008.001. Acesso em: 07 out. 2022.
    • APA

      Asperti, A. C., & Valério, B. C. (2010). Ruled Weingarten hypersurfaces in Sn+1. Advances in Geometry, 8( 1), 1-10. doi:10.1515/ADVGEOM.2008.001
    • NLM

      Asperti AC, Valério BC. Ruled Weingarten hypersurfaces in Sn+1 [Internet]. Advances in Geometry. 2010 ; 8( 1): 1-10.[citado 2022 out. 07 ] Available from: https://doi.org/10.1515/ADVGEOM.2008.001
    • Vancouver

      Asperti AC, Valério BC. Ruled Weingarten hypersurfaces in Sn+1 [Internet]. Advances in Geometry. 2010 ; 8( 1): 1-10.[citado 2022 out. 07 ] Available from: https://doi.org/10.1515/ADVGEOM.2008.001
  • Source: Advances in Geometry. Unidade: ICMC

    Subject: SINGULARIDADES

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e TARI, Farid. Families of surfaces and conjugate curve congruences. Advances in Geometry, v. 9, n. 2, p. 279-309, 2009Tradução . . Acesso em: 07 out. 2022.
    • APA

      Nabarro, A. C., & Tari, F. (2009). Families of surfaces and conjugate curve congruences. Advances in Geometry, 9( 2), 279-309. doi:10.1515/advgeom.2009.017
    • NLM

      Nabarro AC, Tari F. Families of surfaces and conjugate curve congruences. Advances in Geometry. 2009 ; 9( 2): 279-309.[citado 2022 out. 07 ]
    • Vancouver

      Nabarro AC, Tari F. Families of surfaces and conjugate curve congruences. Advances in Geometry. 2009 ; 9( 2): 279-309.[citado 2022 out. 07 ]
  • Source: Advances in Geometry. Unidade: IME

    Subject: GEOMETRIA DIFERENCIAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASPERTI, Antonio Carlos e LOBOS, Guillermo Antonio e MERCURI, Francesco. Pseudo-parallel submanifolds of a space form. Advances in Geometry, v. 2, n. 1, p. 57-71, 2002Tradução . . Disponível em: https://doi.org/10.1515/advg.2001.027. Acesso em: 07 out. 2022.
    • APA

      Asperti, A. C., Lobos, G. A., & Mercuri, F. (2002). Pseudo-parallel submanifolds of a space form. Advances in Geometry, 2( 1), 57-71. doi:10.1515/advg.2001.027
    • NLM

      Asperti AC, Lobos GA, Mercuri F. Pseudo-parallel submanifolds of a space form [Internet]. Advances in Geometry. 2002 ; 2( 1): 57-71.[citado 2022 out. 07 ] Available from: https://doi.org/10.1515/advg.2001.027
    • Vancouver

      Asperti AC, Lobos GA, Mercuri F. Pseudo-parallel submanifolds of a space form [Internet]. Advances in Geometry. 2002 ; 2( 1): 57-71.[citado 2022 out. 07 ] Available from: https://doi.org/10.1515/advg.2001.027

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022