Filtros : "Topology and its Applications" "IME" Removidos: " IQ005" "Colli, Eduardo" "ICMC-SMA" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, v. 333, n. artigo 108538, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108538. Acesso em: 07 nov. 2024.
    • APA

      Bellini, M. K., Hart, K. P., Rodrigues, V. O., & Tomita, A. H. (2023). Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, 333( artigo 108538), 1-23. doi:10.1016/j.topol.2023.108538
    • NLM

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
    • Vancouver

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. On powers of countably pracompact groups. Topology and its Applications, v. 327, n. artigo 108434, p. 1-31, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108434. Acesso em: 07 nov. 2024.
    • APA

      Tomita, A. H., & Fraga, J. T. (2023). On powers of countably pracompact groups. Topology and its Applications, 327( artigo 108434), 1-31. doi:10.1016/j.topol.2023.108434
    • NLM

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
    • Vancouver

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMÁN, O. et al. Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, v. 305, n. artigo 107872, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107872. Acesso em: 07 nov. 2024.
    • APA

      Guzmán, O., Hrušák, M., Rodrigues, V. de O., Todorcevic, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, 305( artigo 107872), 1-24. doi:10.1016/j.topol.2021.107872
    • NLM

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
    • Vancouver

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. Some pseudocompact-like properties in certain topological groups. Topology and its Applications, v. 314, n. artigo 108111, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2022.108111. Acesso em: 07 nov. 2024.
    • APA

      Tomita, A. H., & Fraga, J. T. (2022). Some pseudocompact-like properties in certain topological groups. Topology and its Applications, 314( artigo 108111), 1-18. doi:10.1016/j.topol.2022.108111
    • NLM

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
    • Vancouver

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, v. 297, n. art. 107703, p. 1-23, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107703. Acesso em: 07 nov. 2024.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, v. 296, n. art. 107684, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107684. Acesso em: 07 nov. 2024.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, v. 293, n. Artigo 107560, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107560. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., Ocampo, O., & Pereiro, C. de M. e. (2021). Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, 293( Artigo 107560), 1-16. doi:10.1016/j.topol.2020.107560
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e TKACHUK, V. V. e WILSON, R. G. On discrete reflexivity of Lindelöf degree and pseudocharacter. Topology and its Applications, v. 300, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107764. Acesso em: 07 nov. 2024.
    • APA

      Alas, O. T., Tkachuk, V. V., & Wilson, R. G. (2021). On discrete reflexivity of Lindelöf degree and pseudocharacter. Topology and its Applications, 300. doi:10.1016/j.topol.2021.107764
    • NLM

      Alas OT, Tkachuk VV, Wilson RG. On discrete reflexivity of Lindelöf degree and pseudocharacter [Internet]. Topology and its Applications. 2021 ; 300[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107764
    • Vancouver

      Alas OT, Tkachuk VV, Wilson RG. On discrete reflexivity of Lindelöf degree and pseudocharacter [Internet]. Topology and its Applications. 2021 ; 300[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107764
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107567. Acesso em: 07 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107568. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2021). Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107568
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, v. 294, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107653. Acesso em: 07 nov. 2024.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S. e TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, v. 285, n. art. 107380, p. 1-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107380. Acesso em: 07 nov. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, v. 259, p. 347-364, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.02.040. Acesso em: 07 nov. 2024.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, v. 267, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106894. Acesso em: 07 nov. 2024.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
  • Source: Topology and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBEIRO, André Santoleri Villa e FAJARDO, Rogério Augusto dos Santos. Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, v. 265, p. 1-15, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.07.006. Acesso em: 07 nov. 2024.
    • APA

      Barbeiro, A. S. V., & Fajardo, R. A. dos S. (2019). Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, 265, 1-15. doi:10.1016/j.topol.2019.07.006
    • NLM

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.07.006
    • Vancouver

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.07.006
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e JUNQUEIRA, Lucia Renato e WILSON, Richard Gordon. On linearly H-closed spaces. Topology and its Applications, v. 258, p. 161-171, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.02.014. Acesso em: 07 nov. 2024.
    • APA

      Alas, O. T., Junqueira, L. R., & Wilson, R. G. (2019). On linearly H-closed spaces. Topology and its Applications, 258, 161-171. doi:10.1016/j.topol.2019.02.014
    • NLM

      Alas OT, Junqueira LR, Wilson RG. On linearly H-closed spaces [Internet]. Topology and its Applications. 2019 ; 258 161-171.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.02.014
    • Vancouver

      Alas OT, Junqueira LR, Wilson RG. On linearly H-closed spaces [Internet]. Topology and its Applications. 2019 ; 258 161-171.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2019.02.014
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS PSEUDOCOMPACTOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador e TOMITA, Artur Hideyuki. Finite powers of selectively pseudocompact groups. Topology and its Applications, v. 248, p. 50-58, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.08.009. Acesso em: 07 nov. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2018). Finite powers of selectively pseudocompact groups. Topology and its Applications, 248, 50-58. doi:10.1016/j.topol.2018.08.009
    • NLM

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
  • Source: Topology and its Applications. Unidade: IME

    Subjects: HIPERESPAÇO, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F e RODRIGUES, V. O. e TOMITA, Artur Hideyuki. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω. Topology and its Applications, v. 246, p. 9-21, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.06.014. Acesso em: 07 nov. 2024.
    • APA

      Ortiz-Castillo, Y. F., Rodrigues, V. O., & Tomita, A. H. (2018). Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω. Topology and its Applications, 246, 9-21. doi:10.1016/j.topol.2018.06.014
    • NLM

      Ortiz-Castillo YF, Rodrigues VO, Tomita AH. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω [Internet]. Topology and its Applications. 2018 ; 246 9-21.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2018.06.014
    • Vancouver

      Ortiz-Castillo YF, Rodrigues VO, Tomita AH. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω [Internet]. Topology and its Applications. 2018 ; 246 9-21.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2018.06.014
  • Source: Topology and its Applications. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, DINÂMICA SIMBÓLICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip e CARVALHO, André Salles de e HALL, Toby. Itineraries for inverse limits of tent maps: a backward view. Topology and its Applications, v. 232, p. 1-12, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.09.012. Acesso em: 07 nov. 2024.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2017). Itineraries for inverse limits of tent maps: a backward view. Topology and its Applications, 232, 1-12. doi:10.1016/j.topol.2017.09.012
    • NLM

      Boyland P, Carvalho AS de, Hall T. Itineraries for inverse limits of tent maps: a backward view [Internet]. Topology and its Applications. 2017 ; 232 1-12.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2017.09.012
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Itineraries for inverse limits of tent maps: a backward view [Internet]. Topology and its Applications. 2017 ; 232 1-12.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2017.09.012
  • Source: Topology and its Applications. Conference titles: Mexican International Conference on Topology and Its Applications - MICTA. Unidade: IME

    Subjects: ESPAÇOS TOPOLÓGICOS, TOPOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e WILSON, Richard G. Properties related to star countability and star finiteness. Topology and its Applications. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.topol.2017.02.021. Acesso em: 07 nov. 2024. , 2017
    • APA

      Alas, O. T., & Wilson, R. G. (2017). Properties related to star countability and star finiteness. Topology and its Applications. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.topol.2017.02.021
    • NLM

      Alas OT, Wilson RG. Properties related to star countability and star finiteness [Internet]. Topology and its Applications. 2017 ; 221 432-439.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2017.02.021
    • Vancouver

      Alas OT, Wilson RG. Properties related to star countability and star finiteness [Internet]. Topology and its Applications. 2017 ; 221 432-439.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.topol.2017.02.021

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024