Filtros : "The Electronic Journal of Combinatorics" Removido: "Financiamento DFG" Limpar

Filtros



Limitar por data


  • Fonte: The Electronic Journal of Combinatorics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTLER, Fábio Happ e FERNANDES, Cristina Gomes e GUTIÉRREZ, Juan. Independent dominating sets in planar triangulations. The Electronic Journal of Combinatorics, v. 31, n. 2, p. 1-10, 2024Tradução . . Disponível em: https://doi.org/10.37236/12548. Acesso em: 02 nov. 2024.
    • APA

      Botler, F. H., Fernandes, C. G., & Gutiérrez, J. (2024). Independent dominating sets in planar triangulations. The Electronic Journal of Combinatorics, 31( 2), 1-10. doi:10.37236/12548
    • NLM

      Botler FH, Fernandes CG, Gutiérrez J. Independent dominating sets in planar triangulations [Internet]. The Electronic Journal of Combinatorics. 2024 ; 31( 2): 1-10.[citado 2024 nov. 02 ] Available from: https://doi.org/10.37236/12548
    • Vancouver

      Botler FH, Fernandes CG, Gutiérrez J. Independent dominating sets in planar triangulations [Internet]. The Electronic Journal of Combinatorics. 2024 ; 31( 2): 1-10.[citado 2024 nov. 02 ] Available from: https://doi.org/10.37236/12548
  • Fonte: The Electronic Journal of Combinatorics. Unidade: IME

    Assuntos: TEORIA DOS GRAFOS, COMBINATÓRIA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LE, Quang-Nhat et al. A continuous analogue of lattice path enumeration. The Electronic Journal of Combinatorics, v. 26, n. 3, p. 1-13, 2019Tradução . . Disponível em: https://doi.org/10.37236/8788. Acesso em: 02 nov. 2024.
    • APA

      Le, Q. -N., Robins, S., Vignat, C., & Wakhare, T. (2019). A continuous analogue of lattice path enumeration. The Electronic Journal of Combinatorics, 26( 3), 1-13. doi:10.37236/8788
    • NLM

      Le Q-N, Robins S, Vignat C, Wakhare T. A continuous analogue of lattice path enumeration [Internet]. The Electronic Journal of Combinatorics. 2019 ; 26( 3): 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.37236/8788
    • Vancouver

      Le Q-N, Robins S, Vignat C, Wakhare T. A continuous analogue of lattice path enumeration [Internet]. The Electronic Journal of Combinatorics. 2019 ; 26( 3): 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.37236/8788
  • Fonte: The Electronic Journal of Combinatorics. Unidade: IME

    Assuntos: COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELLAMONICA JUNIOR, Domingos e KOHAYAKAWA, Yoshiharu. An algorithmic Friedman-Pippenger theorem on tree embeddings and applications. The Electronic Journal of Combinatorics, v. 15, p. 1-15, 2008Tradução . . Disponível em: https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r127. Acesso em: 02 nov. 2024.
    • APA

      Dellamonica Junior, D., & Kohayakawa, Y. (2008). An algorithmic Friedman-Pippenger theorem on tree embeddings and applications. The Electronic Journal of Combinatorics, 15, 1-15. Recuperado de https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r127
    • NLM

      Dellamonica Junior D, Kohayakawa Y. An algorithmic Friedman-Pippenger theorem on tree embeddings and applications [Internet]. The Electronic Journal of Combinatorics. 2008 ; 15 1-15.[citado 2024 nov. 02 ] Available from: https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r127
    • Vancouver

      Dellamonica Junior D, Kohayakawa Y. An algorithmic Friedman-Pippenger theorem on tree embeddings and applications [Internet]. The Electronic Journal of Combinatorics. 2008 ; 15 1-15.[citado 2024 nov. 02 ] Available from: https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r127

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024