Filtros : "Probability in the Engineering and Informational Sciences" Limpar

Filtros



Refine with date range


  • Source: Probability in the Engineering and Informational Sciences. Unidade: IME

    Subjects: SUFICIÊNCIA, TEORIA DA INFORMAÇÃO, ENTROPIA, PROCESSOS DE POISSON

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Vanderlei da Costa e BALAKRISHNAN, Narayanaswamy. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes. Probability in the Engineering and Informational Sciences, v. 36, n. 2, p. 294-319, 2022Tradução . . Disponível em: https://doi.org/10.1017/S0269964820000637. Acesso em: 13 dez. 2025.
    • APA

      Bueno, V. da C., & Balakrishnan, N. (2022). A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes. Probability in the Engineering and Informational Sciences, 36( 2), 294-319. doi:10.1017/S0269964820000637
    • NLM

      Bueno V da C, Balakrishnan N. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes [Internet]. Probability in the Engineering and Informational Sciences. 2022 ; 36( 2): 294-319.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964820000637
    • Vancouver

      Bueno V da C, Balakrishnan N. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes [Internet]. Probability in the Engineering and Informational Sciences. 2022 ; 36( 2): 294-319.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964820000637
  • Source: Probability in the Engineering and Informational Sciences. Unidade: IME

    Subjects: INFERÊNCIA BAYESIANA, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YOSHIDA, Olga Satomi e LEITE, Jose Galvao e BOLFARINE, Heleno. Bayes' estimation of the number of component processes of a superimposed process. Probability in the Engineering and Informational Sciences, v. 10, n. 3, p. 443-461, 1996Tradução . . Disponível em: https://doi.org/10.1017/S0269964800004460. Acesso em: 13 dez. 2025.
    • APA

      Yoshida, O. S., Leite, J. G., & Bolfarine, H. (1996). Bayes' estimation of the number of component processes of a superimposed process. Probability in the Engineering and Informational Sciences, 10( 3), 443-461. doi:10.1017/S0269964800004460
    • NLM

      Yoshida OS, Leite JG, Bolfarine H. Bayes' estimation of the number of component processes of a superimposed process [Internet]. Probability in the Engineering and Informational Sciences. 1996 ; 10( 3): 443-461.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964800004460
    • Vancouver

      Yoshida OS, Leite JG, Bolfarine H. Bayes' estimation of the number of component processes of a superimposed process [Internet]. Probability in the Engineering and Informational Sciences. 1996 ; 10( 3): 443-461.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964800004460
  • Source: Probability in the Engineering and Informational Sciences. Unidade: IME

    Subjects: AMOSTRAGEM, INFERÊNCIA PARAMÉTRICA, ESTIMAÇÃO SEQUENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEITE, João Galvão e OISHI, J e PEREIRA, Carlos Alberto de Bragança. Exact maximum likelihood estimate of a finite population size: capture - recapture sequential sample data. Probability in the Engineering and Informational Sciences, v. 1 , n. 2 , p. 225-236, 1987Tradução . . Disponível em: https://doi.org/10.1017/S0269964800000425. Acesso em: 13 dez. 2025.
    • APA

      Leite, J. G., Oishi, J., & Pereira, C. A. de B. (1987). Exact maximum likelihood estimate of a finite population size: capture - recapture sequential sample data. Probability in the Engineering and Informational Sciences, 1 ( 2 ), 225-236. doi:10.1017/S0269964800000425
    • NLM

      Leite JG, Oishi J, Pereira CA de B. Exact maximum likelihood estimate of a finite population size: capture - recapture sequential sample data [Internet]. Probability in the Engineering and Informational Sciences. 1987 ;1 ( 2 ): 225-236.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964800000425
    • Vancouver

      Leite JG, Oishi J, Pereira CA de B. Exact maximum likelihood estimate of a finite population size: capture - recapture sequential sample data [Internet]. Probability in the Engineering and Informational Sciences. 1987 ;1 ( 2 ): 225-236.[citado 2025 dez. 13 ] Available from: https://doi.org/10.1017/S0269964800000425

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025