Filtros : "Polymer Engineering and Science" Removido: "MACRÓFITAS" Limpar

Filtros



Limitar por data


  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: INTELIGÊNCIA ARTIFICIAL, APRENDIZAGEM PROFUNDA, POLÍMEROS (MATERIAIS), ENGENHARIA AERONÁUTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIRES, Ênio H. et al. Data generation and deep neural network predictions for aged mechanical properties. Polymer Engineering and Science, p. 1-17, 2025Tradução . . Disponível em: http://dx.doi.org/10.1002/pen.27196. Acesso em: 29 nov. 2025.
    • APA

      Pires, Ê. H., Barros, S. de, Casari, P., & Ribeiro, M. L. (2025). Data generation and deep neural network predictions for aged mechanical properties. Polymer Engineering and Science, 1-17. doi:10.1002/pen.27196
    • NLM

      Pires ÊH, Barros S de, Casari P, Ribeiro ML. Data generation and deep neural network predictions for aged mechanical properties [Internet]. Polymer Engineering and Science. 2025 ; 1-17.[citado 2025 nov. 29 ] Available from: http://dx.doi.org/10.1002/pen.27196
    • Vancouver

      Pires ÊH, Barros S de, Casari P, Ribeiro ML. Data generation and deep neural network predictions for aged mechanical properties [Internet]. Polymer Engineering and Science. 2025 ; 1-17.[citado 2025 nov. 29 ] Available from: http://dx.doi.org/10.1002/pen.27196
  • Fonte: Polymer Engineering and Science. Unidades: FZEA, IQSC

    Assuntos: BIOPOLÍMEROS, NANOCOMPOSITOS, PITANGA, FILMES COMESTÍVEIS, GELATINA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TESSARO, Larissa et al. The conditioning relative humidity influences the gas permeability of active films and nanocomposites based on gelatin. Polymer Engineering and Science, v. 65, n. 7, p. 3595-3606, 2025Tradução . . Disponível em: https://doi.org/10.1002/pen.27235. Acesso em: 29 nov. 2025.
    • APA

      Tessaro, L., Benoso, P., Siracusa, V., Lourenço, R. V., Dalla Rosa, M., & Sobral, P. J. do A. (2025). The conditioning relative humidity influences the gas permeability of active films and nanocomposites based on gelatin. Polymer Engineering and Science, 65( 7), 3595-3606. doi:10.1002/pen.27235
    • NLM

      Tessaro L, Benoso P, Siracusa V, Lourenço RV, Dalla Rosa M, Sobral PJ do A. The conditioning relative humidity influences the gas permeability of active films and nanocomposites based on gelatin [Internet]. Polymer Engineering and Science. 2025 ; 65( 7): 3595-3606.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.27235
    • Vancouver

      Tessaro L, Benoso P, Siracusa V, Lourenço RV, Dalla Rosa M, Sobral PJ do A. The conditioning relative humidity influences the gas permeability of active films and nanocomposites based on gelatin [Internet]. Polymer Engineering and Science. 2025 ; 65( 7): 3595-3606.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.27235
  • Fonte: Polymer Engineering and Science. Unidade: IQSC

    Assuntos: REOLOGIA, QUITOSANA, TERMOPLÁSTICOS, AMIDO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HORN, Marília M e MARTINS, Virginia da Conceição Amaro e PLEPIS, Ana Maria de Guzzi. Characterization of films and film-forming solutions of chitosan/thermoplastic rice starch associations: Role of starch oxidation and plasticizer type in the molecular interactions. Polymer Engineering and Science, p. 1-13, 2023Tradução . . Disponível em: https://doi.org/10.1002/pen.26513. Acesso em: 29 nov. 2025.
    • APA

      Horn, M. M., Martins, V. da C. A., & Plepis, A. M. de G. (2023). Characterization of films and film-forming solutions of chitosan/thermoplastic rice starch associations: Role of starch oxidation and plasticizer type in the molecular interactions. Polymer Engineering and Science, 1-13. doi:10.1002/pen.26513
    • NLM

      Horn MM, Martins V da CA, Plepis AM de G. Characterization of films and film-forming solutions of chitosan/thermoplastic rice starch associations: Role of starch oxidation and plasticizer type in the molecular interactions [Internet]. Polymer Engineering and Science. 2023 ; 1-13.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.26513
    • Vancouver

      Horn MM, Martins V da CA, Plepis AM de G. Characterization of films and film-forming solutions of chitosan/thermoplastic rice starch associations: Role of starch oxidation and plasticizer type in the molecular interactions [Internet]. Polymer Engineering and Science. 2023 ; 1-13.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.26513
  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: POLÍMEROS (MATERIAIS), BIODEGRADAÇÃO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAGUTI, Marcos Vinicios Hiroshi et al. Numerical approach to simulate the mechanical behavior of biodegradable structures considering degradation time and heterogeneous stress field. Polymer Engineering and Science, v. 60, n. 7, p. 1566-1578, 2020Tradução . . Disponível em: https://doi.org/10.1002/pen.25402. Acesso em: 29 nov. 2025.
    • APA

      Taguti, M. V. H., Françoso, A. T., Ribeiro, M. L., & Vieira, A. F. C. (2020). Numerical approach to simulate the mechanical behavior of biodegradable structures considering degradation time and heterogeneous stress field. Polymer Engineering and Science, 60( 7), 1566-1578. doi:10.1002/pen.25402
    • NLM

      Taguti MVH, Françoso AT, Ribeiro ML, Vieira AFC. Numerical approach to simulate the mechanical behavior of biodegradable structures considering degradation time and heterogeneous stress field [Internet]. Polymer Engineering and Science. 2020 ; 60( 7): 1566-1578.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.25402
    • Vancouver

      Taguti MVH, Françoso AT, Ribeiro ML, Vieira AFC. Numerical approach to simulate the mechanical behavior of biodegradable structures considering degradation time and heterogeneous stress field [Internet]. Polymer Engineering and Science. 2020 ; 60( 7): 1566-1578.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.25402
  • Fonte: Polymer Engineering and Science. Unidade: FZEA

    Assuntos: QUITOSANA, CELULOSE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS-ALEXANDRINO, Taís Teo de e MARTELLI-TOSI, Milena e ASSIS, Odílio Benedito Garrido de. Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement fillers in papaya puree films: effects on mechanical, water vapor barrier, and thermal properties. Polymer Engineering and Science, v. 59, n. ja 2019, p. E287-E292, 2019Tradução . . Disponível em: https://doi.org/10.1002/pen.24938. Acesso em: 29 nov. 2025.
    • APA

      Barros-Alexandrino, T. T. de, Martelli-Tosi, M., & Assis, O. B. G. de. (2019). Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement fillers in papaya puree films: effects on mechanical, water vapor barrier, and thermal properties. Polymer Engineering and Science, 59( ja 2019), E287-E292. doi:10.1002/pen.24938
    • NLM

      Barros-Alexandrino TT de, Martelli-Tosi M, Assis OBG de. Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement fillers in papaya puree films: effects on mechanical, water vapor barrier, and thermal properties [Internet]. Polymer Engineering and Science. 2019 ; 59( ja 2019): E287-E292.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24938
    • Vancouver

      Barros-Alexandrino TT de, Martelli-Tosi M, Assis OBG de. Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement fillers in papaya puree films: effects on mechanical, water vapor barrier, and thermal properties [Internet]. Polymer Engineering and Science. 2019 ; 59( ja 2019): E287-E292.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24938
  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: POLÍMEROS (MATERIAIS), CRISTALIZAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Fabiana Massarente e CANEVAROLO, Sebastião Vicente e CHINELATTO, Marcelo Aparecido. Isothermal crystallization kinetics of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with low-molecular weight block copolymers. Polymer Engineering and Science, v. 59, n. S2, p. E161-E169, 2019Tradução . . Disponível em: https://doi.org/10.1002/pen.25019. Acesso em: 29 nov. 2025.
    • APA

      Pereira, F. M., Canevarolo, S. V., & Chinelatto, M. A. (2019). Isothermal crystallization kinetics of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with low-molecular weight block copolymers. Polymer Engineering and Science, 59( S2), E161-E169. doi:10.1002/pen.25019
    • NLM

      Pereira FM, Canevarolo SV, Chinelatto MA. Isothermal crystallization kinetics of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with low-molecular weight block copolymers [Internet]. Polymer Engineering and Science. 2019 ; 59( S2): E161-E169.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.25019
    • Vancouver

      Pereira FM, Canevarolo SV, Chinelatto MA. Isothermal crystallization kinetics of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with low-molecular weight block copolymers [Internet]. Polymer Engineering and Science. 2019 ; 59( S2): E161-E169.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.25019
  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: NANOCOMPOSITOS, EXTRUSÃO, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORELLI, Carolina Lipparelli et al. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polymer Engineering and Science, v. 56, n. 12, p. 1339-1348, 2016Tradução . . Disponível em: https://doi.org/10.1002/pen.24367. Acesso em: 29 nov. 2025.
    • APA

      Morelli, C. L., Belgacem, M. N., Branciforti, M. C., Salon, M. C. B., Bras, J., & Bretas, R. E. S. (2016). Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polymer Engineering and Science, 56( 12), 1339-1348. doi:10.1002/pen.24367
    • NLM

      Morelli CL, Belgacem MN, Branciforti MC, Salon MCB, Bras J, Bretas RES. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion [Internet]. Polymer Engineering and Science. 2016 ; 56( 12): 1339-1348.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24367
    • Vancouver

      Morelli CL, Belgacem MN, Branciforti MC, Salon MCB, Bras J, Bretas RES. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion [Internet]. Polymer Engineering and Science. 2016 ; 56( 12): 1339-1348.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24367
  • Fonte: Polymer Engineering and Science. Unidade: FZEA

    Assuntos: FIBRAS VEGETAIS, EUCALIPTO, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDES, Rafael Farinassi et al. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length. Polymer Engineering and Science, v. 55, n. 6, p. 1273-1280, 2015Tradução . . Disponível em: https://doi.org/10.1002/pen.24065. Acesso em: 29 nov. 2025.
    • APA

      Mendes, R. F., Mendes, L. M., Oliveira, J. E., Savastano Júnior, H., Glenn, G., & Tonoli, G. H. D. (2015). Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length. Polymer Engineering and Science, 55( 6), 1273-1280. doi:10.1002/pen.24065
    • NLM

      Mendes RF, Mendes LM, Oliveira JE, Savastano Júnior H, Glenn G, Tonoli GHD. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length [Internet]. Polymer Engineering and Science. 2015 ; 55( 6): 1273-1280.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24065
    • Vancouver

      Mendes RF, Mendes LM, Oliveira JE, Savastano Júnior H, Glenn G, Tonoli GHD. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length [Internet]. Polymer Engineering and Science. 2015 ; 55( 6): 1273-1280.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.24065
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: BIODEGRADAÇÃO, BLENDAS, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SADI, Roberta Kalil e FECHINE, Guilhermino José Macêdo e DEMARQUETTE, Nicole Raymonde. Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends. Polymer Engineering and Science, v. 53, n. 10, p. 2109-2122, 2013Tradução . . Disponível em: https://doi.org/10.1002/pen.23471. Acesso em: 29 nov. 2025.
    • APA

      Sadi, R. K., Fechine, G. J. M., & Demarquette, N. R. (2013). Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends. Polymer Engineering and Science, 53( 10), 2109-2122. doi:10.1002/pen.23471
    • NLM

      Sadi RK, Fechine GJM, Demarquette NR. Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends [Internet]. Polymer Engineering and Science. 2013 ;53( 10): 2109-2122.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.23471
    • Vancouver

      Sadi RK, Fechine GJM, Demarquette NR. Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends [Internet]. Polymer Engineering and Science. 2013 ;53( 10): 2109-2122.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.23471
  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: POLÍMEROS (MATERIAIS), ANÁLISE EXPERIMENTAL DE ESTRUTURAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TITA, Volnei et al. Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior. Polymer Engineering and Science, v. 52, n. 12, p. 2654-2663, 2012Tradução . . Disponível em: https://doi.org/10.1002/pen.23222. Acesso em: 29 nov. 2025.
    • APA

      Tita, V., Caliri Júnior, M. F., Angélico, R. A., & Canto, R. B. (2012). Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior. Polymer Engineering and Science, 52( 12), 2654-2663. doi:10.1002/pen.23222
    • NLM

      Tita V, Caliri Júnior MF, Angélico RA, Canto RB. Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior [Internet]. Polymer Engineering and Science. 2012 ; 52( 12): 2654-2663.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.23222
    • Vancouver

      Tita V, Caliri Júnior MF, Angélico RA, Canto RB. Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior [Internet]. Polymer Engineering and Science. 2012 ; 52( 12): 2654-2663.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.23222
  • Fonte: Polymer Engineering and Science. Unidade: EESC

    Assuntos: SINTERIZAÇÃO, RESISTÊNCIA DOS MATERIAIS, ENGENHARIA MECÂNICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANTO, Rodrigo Bresciani et al. Experimental identification of the deformation mechanisms during sintering of cold compacted polytetrafluoroethylene powders. Polymer Engineering and Science, v. No 2011, n. 11, p. 2220-2235, 2011Tradução . . Disponível em: https://doi.org/10.1002/pen.21994. Acesso em: 29 nov. 2025.
    • APA

      Canto, R. B., Schmitt, N., Carvalho, J. de, & Billardon, R. (2011). Experimental identification of the deformation mechanisms during sintering of cold compacted polytetrafluoroethylene powders. Polymer Engineering and Science, No 2011( 11), 2220-2235. doi:10.1002/pen.21994
    • NLM

      Canto RB, Schmitt N, Carvalho J de, Billardon R. Experimental identification of the deformation mechanisms during sintering of cold compacted polytetrafluoroethylene powders [Internet]. Polymer Engineering and Science. 2011 ; No 2011( 11): 2220-2235.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21994
    • Vancouver

      Canto RB, Schmitt N, Carvalho J de, Billardon R. Experimental identification of the deformation mechanisms during sintering of cold compacted polytetrafluoroethylene powders [Internet]. Polymer Engineering and Science. 2011 ; No 2011( 11): 2220-2235.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21994
  • Fonte: Polymer Engineering and Science. Unidade: IQ

    Assunto: QUÍMICA ORGÂNICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IMMICH, Ana Paula Serafini et al. Crosslinking of poly(N-vinyl-2-pyrrolidone) in the coating of cotton yarn. Polymer Engineering and Science, v. 51, n. 3, p. 445-453, 2011Tradução . . Disponível em: https://doi.org/10.1002/pen.21845. Acesso em: 29 nov. 2025.
    • APA

      Immich, A. P. S., Araujo, P. H. H. de, Catalani, L. H., Souza, A. A. U. de, & Souza, S. M. de A. G. U. (2011). Crosslinking of poly(N-vinyl-2-pyrrolidone) in the coating of cotton yarn. Polymer Engineering and Science, 51( 3), 445-453. doi:10.1002/pen.21845
    • NLM

      Immich APS, Araujo PHH de, Catalani LH, Souza AAU de, Souza SM de AGU. Crosslinking of poly(N-vinyl-2-pyrrolidone) in the coating of cotton yarn [Internet]. Polymer Engineering and Science. 2011 ; 51( 3): 445-453.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21845
    • Vancouver

      Immich APS, Araujo PHH de, Catalani LH, Souza AAU de, Souza SM de AGU. Crosslinking of poly(N-vinyl-2-pyrrolidone) in the coating of cotton yarn [Internet]. Polymer Engineering and Science. 2011 ; 51( 3): 445-453.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21845
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: BIODEGRADAÇÃO AMBIENTAL, RADIAÇÃO ULTRAVIOLETA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FECHINE, Guilhermino José Macêdo et al. Effect of UV radiation and pro-oxidant on PP biodegradability. Polymer Engineering and Science, v. 49, n. 1, p. 123-128, 2009Tradução . . Disponível em: https://doi.org/10.1002/pen.21230. Acesso em: 29 nov. 2025.
    • APA

      Fechine, G. J. M., Rosa, D. S., Rezende, M. E., & Demarquette, N. R. (2009). Effect of UV radiation and pro-oxidant on PP biodegradability. Polymer Engineering and Science, 49( 1), 123-128. doi:10.1002/pen.21230
    • NLM

      Fechine GJM, Rosa DS, Rezende ME, Demarquette NR. Effect of UV radiation and pro-oxidant on PP biodegradability [Internet]. Polymer Engineering and Science. 2009 ; 49( 1): 123-128.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21230
    • Vancouver

      Fechine GJM, Rosa DS, Rezende ME, Demarquette NR. Effect of UV radiation and pro-oxidant on PP biodegradability [Internet]. Polymer Engineering and Science. 2009 ; 49( 1): 123-128.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21230
  • Fonte: Polymer Engineering and Science. Unidade: ICB

    Assunto: MICROBIOLOGIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Silvia M. F. et al. Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding. Polymer Engineering and Science, v. 48, n. 10, p. 2051-2059, 2008Tradução . . Disponível em: https://doi.org/10.1002/pen.21178. Acesso em: 29 nov. 2025.
    • APA

      Pereira, S. M. F., Sánchez, R. J., Rieumont, J., & Gomez, J. G. C. (2008). Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding. Polymer Engineering and Science, 48( 10), 2051-2059. doi:10.1002/pen.21178
    • NLM

      Pereira SMF, Sánchez RJ, Rieumont J, Gomez JGC. Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 2051-2059.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21178
    • Vancouver

      Pereira SMF, Sánchez RJ, Rieumont J, Gomez JGC. Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 2051-2059.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21178
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: MATERIAIS MAGNÉTICOS, GOMAS E RESINAS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTA MARIA, Luiz Claudio de et al. Preparation and characterization of crosslinked resins containing ferrite particles. Polymer Engineering and Science, v. 48, n. 10, p. 1878-1884, 2008Tradução . . Disponível em: https://doi.org/10.1002/pen.21040. Acesso em: 29 nov. 2025.
    • APA

      Santa Maria, L. C. de, Simplício, S., Simplício, S., Ribeiro, C. A. B., Costa, M. A. S., Silva, M. R., et al. (2008). Preparation and characterization of crosslinked resins containing ferrite particles. Polymer Engineering and Science, 48( 10), 1878-1884. doi:10.1002/pen.21040
    • NLM

      Santa Maria LC de, Simplício S, Simplício S, Ribeiro CAB, Costa MAS, Silva MR, Wang SH, Amico SC. Preparation and characterization of crosslinked resins containing ferrite particles [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 1878-1884.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21040
    • Vancouver

      Santa Maria LC de, Simplício S, Simplício S, Ribeiro CAB, Costa MAS, Silva MR, Wang SH, Amico SC. Preparation and characterization of crosslinked resins containing ferrite particles [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 1878-1884.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21040
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: POLIMERIZAÇÃO, NANOPARTÍCULAS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DRUMOND, Walker Soares e MOTHE, Cheila Goncalves e WANG, Shu Hui. Biodegradable nanosize particles of Poly(L,L-lactide)-b-Poly(ethylene glycol)-b-Poly(L,L-lactide). Polymer Engineering and Science, v. 48, n. 10, p. 1939- 1946, 2008Tradução . . Disponível em: https://doi.org/10.1002/pen.21121. Acesso em: 29 nov. 2025.
    • APA

      Drumond, W. S., Mothe, C. G., & Wang, S. H. (2008). Biodegradable nanosize particles of Poly(L,L-lactide)-b-Poly(ethylene glycol)-b-Poly(L,L-lactide). Polymer Engineering and Science, 48( 10), 1939- 1946. doi:10.1002/pen.21121
    • NLM

      Drumond WS, Mothe CG, Wang SH. Biodegradable nanosize particles of Poly(L,L-lactide)-b-Poly(ethylene glycol)-b-Poly(L,L-lactide) [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 1939- 1946.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21121
    • Vancouver

      Drumond WS, Mothe CG, Wang SH. Biodegradable nanosize particles of Poly(L,L-lactide)-b-Poly(ethylene glycol)-b-Poly(L,L-lactide) [Internet]. Polymer Engineering and Science. 2008 ; 48( 10): 1939- 1946.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21121
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: NANOCOMPOSITOS, POLIÉSTER

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Camila Fernanda de Paula et al. Photooxidative behavior of polystyrene-montmorillonite nanocomposites. Polymer Engineering and Science, v. 48, n. 7, p. 1511-1517, 2008Tradução . . Disponível em: https://doi.org/10.1002/pen.21120. Acesso em: 29 nov. 2025.
    • APA

      Oliveira, C. F. de P., Carastan, D. J., Demarquette, N. R., & Fechine, G. J. M. (2008). Photooxidative behavior of polystyrene-montmorillonite nanocomposites. Polymer Engineering and Science, 48( 7), 1511-1517. doi:10.1002/pen.21120
    • NLM

      Oliveira CF de P, Carastan DJ, Demarquette NR, Fechine GJM. Photooxidative behavior of polystyrene-montmorillonite nanocomposites [Internet]. Polymer Engineering and Science. 2008 ; 48( 7): 1511-1517.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21120
    • Vancouver

      Oliveira CF de P, Carastan DJ, Demarquette NR, Fechine GJM. Photooxidative behavior of polystyrene-montmorillonite nanocomposites [Internet]. Polymer Engineering and Science. 2008 ; 48( 7): 1511-1517.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.21120
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: POLÍMEROS (MATERIAIS), CRISTALIZAÇÃO, OXIDAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FECHINE, Guilhermino José Macêdo e DEMARQUETTE, Nicole Raymonde. Cracking formation on the surface of extruded photodegraded polypropylene plates. Polymer Engineering and Science, v. 48, n. 2, p. 365-372, 2008Tradução . . Disponível em: https://doi.org/10.1002/pen.20958. Acesso em: 29 nov. 2025.
    • APA

      Fechine, G. J. M., & Demarquette, N. R. (2008). Cracking formation on the surface of extruded photodegraded polypropylene plates. Polymer Engineering and Science, 48( 2), 365-372. doi:10.1002/pen.20958
    • NLM

      Fechine GJM, Demarquette NR. Cracking formation on the surface of extruded photodegraded polypropylene plates [Internet]. Polymer Engineering and Science. 2008 ; 48( 2): 365-372.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.20958
    • Vancouver

      Fechine GJM, Demarquette NR. Cracking formation on the surface of extruded photodegraded polypropylene plates [Internet]. Polymer Engineering and Science. 2008 ; 48( 2): 365-372.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.20958
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: POLÍMEROS (MATERIAIS), TENSÃO INTERFACIAL, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEMARQUETTE, Nicole Raymonde et al. Comparison between five experimental methods to evaluate interfacial tension between molten polymers. Polymer Engineering and Science, v. 43, n. 3, p. 670-683, 2003Tradução . . Disponível em: https://doi.org/10.1002/pen.10055. Acesso em: 29 nov. 2025.
    • APA

      Demarquette, N. R., Souza, A. M. C. de, Palmer Martín, G., & Macaúbas, P. H. P. (2003). Comparison between five experimental methods to evaluate interfacial tension between molten polymers. Polymer Engineering and Science, 43( 3), 670-683. doi:10.1002/pen.10055
    • NLM

      Demarquette NR, Souza AMC de, Palmer Martín G, Macaúbas PHP. Comparison between five experimental methods to evaluate interfacial tension between molten polymers [Internet]. Polymer Engineering and Science. 2003 ;43( 3): 670-683.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.10055
    • Vancouver

      Demarquette NR, Souza AMC de, Palmer Martín G, Macaúbas PHP. Comparison between five experimental methods to evaluate interfacial tension between molten polymers [Internet]. Polymer Engineering and Science. 2003 ;43( 3): 670-683.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.10055
  • Fonte: Polymer Engineering and Science. Unidade: EP

    Assuntos: PLASMA, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTO, Elisete et al. Oxygen plasma treatment of sisal fibers and polypropylene : effects on mechanical properties of composites. Polymer Engineering and Science, v. 42, n. 4, p. 790-797, 2002Tradução . . Disponível em: https://doi.org/10.1002/pen.10991. Acesso em: 29 nov. 2025.
    • APA

      Couto, E., Tan, I. H., Demarquette, N. R., Caraschi, J. C., & Leão, A. (2002). Oxygen plasma treatment of sisal fibers and polypropylene : effects on mechanical properties of composites. Polymer Engineering and Science, 42( 4), 790-797. doi:10.1002/pen.10991
    • NLM

      Couto E, Tan IH, Demarquette NR, Caraschi JC, Leão A. Oxygen plasma treatment of sisal fibers and polypropylene : effects on mechanical properties of composites [Internet]. Polymer Engineering and Science. 2002 ;42( 4): 790-797.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.10991
    • Vancouver

      Couto E, Tan IH, Demarquette NR, Caraschi JC, Leão A. Oxygen plasma treatment of sisal fibers and polypropylene : effects on mechanical properties of composites [Internet]. Polymer Engineering and Science. 2002 ;42( 4): 790-797.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1002/pen.10991

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025