Filtros : "Nonlinearity" Removido: "Reino Unido" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 16 jun. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, SIMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCURI, Carlo e MOREIRA DOS SANTOS, Ederson. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, v. 32, n. 11, p. 4445-4464, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab2d6f. Acesso em: 16 jun. 2025.
    • APA

      Mercuri, C., & Moreira dos Santos, E. (2019). Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, 32( 11), 4445-4464. doi:10.1088/1361-6544/ab2d6f
    • NLM

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
    • Vancouver

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Rita de Cássia Dornelas Sodré e CARVALHO, Alexandre Nolasco de e VALERO, José. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, v. 32, n. 12, p. 4912-4941, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab3f55. Acesso em: 16 jun. 2025.
    • APA

      Broche, R. de C. D. S., Carvalho, A. N. de, & Valero, J. (2019). A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, 32( 12), 4912-4941. doi:10.1088/1361-6544/ab3f55
    • NLM

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
    • Vancouver

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 16 jun. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: SISTEMAS DINÂMICOS HOLOMORFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Carlos e SMANIA, Daniel. Holomorphic motions for unicritical correspondences. Nonlinearity, v. 30, n. 8, p. 3104-3125, 2017Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aa7736. Acesso em: 16 jun. 2025.
    • APA

      Siqueira, C., & Smania, D. (2017). Holomorphic motions for unicritical correspondences. Nonlinearity, 30( 8), 3104-3125. doi:10.1088/1361-6544/aa7736
    • NLM

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
    • Vancouver

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e ROBERTS, Mark. Gradient systems on coupled cell networks. Nonlinearity, v. 28, n. 10, p. 3487-3509, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/10/3487. Acesso em: 16 jun. 2025.
    • APA

      Manoel, M. G., & Roberts, M. (2015). Gradient systems on coupled cell networks. Nonlinearity, 28( 10), 3487-3509. doi:10.1088/0951-7715/28/10/3487
    • NLM

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
    • Vancouver

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
  • Source: Nonlinearity. Unidade: IME

    Subjects: BILHARES, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARKARIAN, Roberto et al. Stochastic perturbations of convex billiards. Nonlinearity, v. 28, n. 12, p. 4425-4434, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/12/4425. Acesso em: 16 jun. 2025.
    • APA

      Markarian, R., Rolla, L. T., Sidoravicius, V., Tal, F. A., & Vares, M. E. (2015). Stochastic perturbations of convex billiards. Nonlinearity, 28( 12), 4425-4434. doi:10.1088/0951-7715/28/12/4425
    • NLM

      Markarian R, Rolla LT, Sidoravicius V, Tal FA, Vares ME. Stochastic perturbations of convex billiards [Internet]. Nonlinearity. 2015 ; 28( 12): 4425-4434.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/12/4425
    • Vancouver

      Markarian R, Rolla LT, Sidoravicius V, Tal FA, Vares ME. Stochastic perturbations of convex billiards [Internet]. Nonlinearity. 2015 ; 28( 12): 4425-4434.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/12/4425
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e LAMBERT, Rodrigo. The distribution of the short-return function. Nonlinearity, v. 26, n. 5, p. 1143-1162, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/5/1143. Acesso em: 16 jun. 2025.
    • APA

      Abadi, M. N., & Lambert, R. (2013). The distribution of the short-return function. Nonlinearity, 26( 5), 1143-1162. doi:10.1088/0951-7715/26/5/1143
    • NLM

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
    • Vancouver

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, F e TAHZIBI, Ali. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, v. 26, n. 4, p. 1071-1082, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/1071. Acesso em: 16 jun. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2013). Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, 26( 4), 1071-1082. doi:10.1088/0951-7715/26/4/1071
    • NLM

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
    • Vancouver

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e TARI, Farid. Apparent contours in Minkowski 3-space and first order ordinary differential equations. Nonlinearity, v. 26, n. 4, p. 911-932, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/911. Acesso em: 16 jun. 2025.
    • APA

      Izumiya, S., & Tari, F. (2013). Apparent contours in Minkowski 3-space and first order ordinary differential equations. Nonlinearity, 26( 4), 911-932. doi:10.1088/0951-7715/26/4/911
    • NLM

      Izumiya S, Tari F. Apparent contours in Minkowski 3-space and first order ordinary differential equations [Internet]. Nonlinearity. 2013 ; 26( 4): 911-932.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/4/911
    • Vancouver

      Izumiya S, Tari F. Apparent contours in Minkowski 3-space and first order ordinary differential equations [Internet]. Nonlinearity. 2013 ; 26( 4): 911-932.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/4/911
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando e ADDAS-ZANATA, Salvador. Maximizing measures for endomorphisms of the circle. Nonlinearity, v. 21, n. 10, p. 2347-2359, 2008Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/21/10/008. Acesso em: 16 jun. 2025.
    • APA

      Tal, F. A., & Addas-Zanata, S. (2008). Maximizing measures for endomorphisms of the circle. Nonlinearity, 21( 10), 2347-2359. doi:10.1088/0951-7715/21/10/008
    • NLM

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008
    • Vancouver

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008
  • Source: Nonlinearity. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando e VANDEN-EIJNDEN, Eric. Transition state theory and dynamical corrections in ergodic systems. Nonlinearity, v. 19, n. 2, p. 501-509, 2006Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/19/2/014. Acesso em: 16 jun. 2025.
    • APA

      Tal, F. A., & vanden-Eijnden, E. (2006). Transition state theory and dynamical corrections in ergodic systems. Nonlinearity, 19( 2), 501-509. doi:10.1088/0951-7715/19/2/014
    • NLM

      Tal FA, vanden-Eijnden E. Transition state theory and dynamical corrections in ergodic systems [Internet]. Nonlinearity. 2006 ; 19( 2): 501-509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/19/2/014
    • Vancouver

      Tal FA, vanden-Eijnden E. Transition state theory and dynamical corrections in ergodic systems [Internet]. Nonlinearity. 2006 ; 19( 2): 501-509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/19/2/014
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IFTIMIE, Dragos e PLANAS, Gabriela del Valle. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, v. 19, n. 4, p. 899-918, 2006Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/19/4/007. Acesso em: 16 jun. 2025.
    • APA

      Iftimie, D., & Planas, G. del V. (2006). Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 19( 4), 899-918. doi:10.1088/0951-7715/19/4/007
    • NLM

      Iftimie D, Planas G del V. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions [Internet]. Nonlinearity. 2006 ; 19( 4): 899-918.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/19/4/007
    • Vancouver

      Iftimie D, Planas G del V. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions [Internet]. Nonlinearity. 2006 ; 19( 4): 899-918.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/19/4/007
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEOREMA DO PONTO FIXO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador. Some extensions of the Poincare-Birkhoff theorem to the cylinder and a remark on mappings of the torus homotopic to Dehn twists. Nonlinearity, v. 18, n. 5, p. 2243-2260, 2005Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/18/5/018. Acesso em: 16 jun. 2025.
    • APA

      Addas-Zanata, S. (2005). Some extensions of the Poincare-Birkhoff theorem to the cylinder and a remark on mappings of the torus homotopic to Dehn twists. Nonlinearity, 18( 5), 2243-2260. doi:10.1088/0951-7715/18/5/018
    • NLM

      Addas-Zanata S. Some extensions of the Poincare-Birkhoff theorem to the cylinder and a remark on mappings of the torus homotopic to Dehn twists [Internet]. Nonlinearity. 2005 ; 18( 5): 2243-2260.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/18/5/018
    • Vancouver

      Addas-Zanata S. Some extensions of the Poincare-Birkhoff theorem to the cylinder and a remark on mappings of the torus homotopic to Dehn twists [Internet]. Nonlinearity. 2005 ; 18( 5): 2243-2260.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/18/5/018
  • Source: Nonlinearity. Unidade: IME

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUMORTIER, Freddy e ROUSSARIE, Robert H e SOTOMAYOR, Jorge. Bifurcations of cuspidal loops. Nonlinearity, v. 10, n. 6, p. 1369-1408, 1997Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/10/6/001. Acesso em: 16 jun. 2025.
    • APA

      Dumortier, F., Roussarie, R. H., & Sotomayor, J. (1997). Bifurcations of cuspidal loops. Nonlinearity, 10( 6), 1369-1408. doi:10.1088/0951-7715/10/6/001
    • NLM

      Dumortier F, Roussarie RH, Sotomayor J. Bifurcations of cuspidal loops [Internet]. Nonlinearity. 1997 ; 10( 6): 1369-1408.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/10/6/001
    • Vancouver

      Dumortier F, Roussarie RH, Sotomayor J. Bifurcations of cuspidal loops [Internet]. Nonlinearity. 1997 ; 10( 6): 1369-1408.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/10/6/001

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025