Filtros : "Nonlinear Differential Equations and Applications NoDEA" Removido: "FFCLRP" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: ESPAÇOS DE SOBOLEV, EQUAÇÕES NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUSTAMANTE, Eddye e JIMÉNEZ URREA, José e MUÑOZ, Alexander. On decay and regularity of solutions to the modified 2D Zakharov-Kuznetsov equation. Nonlinear Differential Equations and Applications NoDEA, v. 32, n. art. 57, p. 1-35, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00030-025-01066-2. Acesso em: 15 jun. 2025.
    • APA

      Bustamante, E., Jiménez Urrea, J., & Muñoz, A. (2025). On decay and regularity of solutions to the modified 2D Zakharov-Kuznetsov equation. Nonlinear Differential Equations and Applications NoDEA, 32( art. 57), 1-35. doi:10.1007/s00030-025-01066-2
    • NLM

      Bustamante E, Jiménez Urrea J, Muñoz A. On decay and regularity of solutions to the modified 2D Zakharov-Kuznetsov equation [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2025 ; 32( art. 57): 1-35.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-025-01066-2
    • Vancouver

      Bustamante E, Jiménez Urrea J, Muñoz A. On decay and regularity of solutions to the modified 2D Zakharov-Kuznetsov equation [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2025 ; 32( art. 57): 1-35.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-025-01066-2
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, OPERADORES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e CELY, Liliana. Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, v. 31, n. artigo 74, p. 1-29, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-024-00956-1. Acesso em: 15 jun. 2025.
    • APA

      Goloshchapova, N., & Cely, L. (2024). Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, 31( artigo 74), 1-29. doi:10.1007/s00030-024-00956-1
    • NLM

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
    • Vancouver

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: OPERADORES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, EQUAÇÃO DE SCHRODINGER

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Stability of standing waves for NLS-log equation with δ-interaction. Nonlinear Differential Equations and Applications NoDEA, v. 24, p. 1-23, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00030-017-0451-0. Acesso em: 15 jun. 2025.
    • APA

      Pava, J. A., & Goloshchapova, N. (2017). Stability of standing waves for NLS-log equation with δ-interaction. Nonlinear Differential Equations and Applications NoDEA, 24, 1-23. doi:10.1007/s00030-017-0451-0
    • NLM

      Pava JA, Goloshchapova N. Stability of standing waves for NLS-log equation with δ-interaction [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2017 ; 24 1-23.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-017-0451-0
    • Vancouver

      Pava JA, Goloshchapova N. Stability of standing waves for NLS-log equation with δ-interaction [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2017 ; 24 1-23.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/s00030-017-0451-0
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA ESPECTRAL, PROBLEMAS DE AUTOVALORES, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz. Eigenvalues of the Laplacian on symmetric regions. Nonlinear Differential Equations and Applications NoDEA, v. 2, n. 1, p. 63-109, 1995Tradução . . Disponível em: https://doi.org/10.1007/bf01194014. Acesso em: 15 jun. 2025.
    • APA

      Pereira, A. L. (1995). Eigenvalues of the Laplacian on symmetric regions. Nonlinear Differential Equations and Applications NoDEA, 2( 1), 63-109. doi:10.1007/bf01194014
    • NLM

      Pereira AL. Eigenvalues of the Laplacian on symmetric regions [Internet]. Nonlinear Differential Equations and Applications NoDEA. 1995 ; 2( 1): 63-109.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/bf01194014
    • Vancouver

      Pereira AL. Eigenvalues of the Laplacian on symmetric regions [Internet]. Nonlinear Differential Equations and Applications NoDEA. 1995 ; 2( 1): 63-109.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/bf01194014
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e OLIVEIRA, José Carlos Fernandes de e SOLA-MORALES, Joan. An infinite-dimensional Morse-Smale map. Nonlinear Differential Equations and Applications NoDEA, v. 1, n. 4, p. 365-387, 1994Tradução . . Disponível em: https://doi.org/10.1007/BF01194986. Acesso em: 15 jun. 2025.
    • APA

      Oliva, W. M., Oliveira, J. C. F. de, & Sola-Morales, J. (1994). An infinite-dimensional Morse-Smale map. Nonlinear Differential Equations and Applications NoDEA, 1( 4), 365-387. doi:10.1007/BF01194986
    • NLM

      Oliva WM, Oliveira JCF de, Sola-Morales J. An infinite-dimensional Morse-Smale map [Internet]. Nonlinear Differential Equations and Applications NoDEA. 1994 ; 1( 4): 365-387.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/BF01194986
    • Vancouver

      Oliva WM, Oliveira JCF de, Sola-Morales J. An infinite-dimensional Morse-Smale map [Internet]. Nonlinear Differential Equations and Applications NoDEA. 1994 ; 1( 4): 365-387.[citado 2025 jun. 15 ] Available from: https://doi.org/10.1007/BF01194986

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025