Filtros : "Minerals Engineering" Limpar

Filtros



Refine with date range


  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: VANÁDIO, RESINAS, SOLVENTE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VINCO, José Helber e ESPINOSA, Denise Crocce Romano e TENÓRIO, Jorge Alberto Soares. Purification of vanadium-bearing solutions: a comprehensive review. Minerals Engineering, v. 227, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2025.109289. Acesso em: 09 fev. 2026.
    • APA

      Vinco, J. H., Espinosa, D. C. R., & Tenório, J. A. S. (2025). Purification of vanadium-bearing solutions: a comprehensive review. Minerals Engineering, 227, 1-17. doi:10.1016/j.mineng.2025.109289
    • NLM

      Vinco JH, Espinosa DCR, Tenório JAS. Purification of vanadium-bearing solutions: a comprehensive review [Internet]. Minerals Engineering. 2025 ;227 1-17.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2025.109289
    • Vancouver

      Vinco JH, Espinosa DCR, Tenório JAS. Purification of vanadium-bearing solutions: a comprehensive review [Internet]. Minerals Engineering. 2025 ;227 1-17.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2025.109289
  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: HIDROMETALURGIA, NIÓBIO, ESTANHO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, v. 232, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2025.109564. Acesso em: 09 fev. 2026.
    • APA

      Machaca, D. M. C., Salazar, R. B. J., Carvalho, T. C. de, Espinosa, D. C. R., & Tenório, J. A. S. (2025). Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, 232, 1-11. doi:10.1016/j.mineng.2025.109564
    • NLM

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
    • Vancouver

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: HIDROMETALURGIA, TÂNTALO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, v. 222, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.109125. Acesso em: 09 fev. 2026.
    • APA

      Machaca, D. M. C., Carvalho, T. C. de, Tenório, J. A. S., & Espinosa, D. C. R. (2025). Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, 222, 1-19. doi:10.1016/j.mineng.2024.109125
    • NLM

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
    • Vancouver

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MICROTOMOGRAFIA, MINÉRIOS, MINERALOGIA, RAIOS X

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ULIANA, Daniel e ULSEN, Carina. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture. Minerals Engineering, v. 22, p. 29 , 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.109150. Acesso em: 09 fev. 2026.
    • APA

      Uliana, D., & Ulsen, C. (2025). Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture. Minerals Engineering, 22, 29 . doi:10.1016/j.mineng.2024.109150
    • NLM

      Uliana D, Ulsen C. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture [Internet]. Minerals Engineering. 2025 ;22 29 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.109150
    • Vancouver

      Uliana D, Ulsen C. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture [Internet]. Minerals Engineering. 2025 ;22 29 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.109150
  • Source: Minerals Engineering. Unidades: RUSP, EP

    Subjects: HIDROMETALURGIA, BAUXITA, LIXIVIAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Luís Henrique do Nascimento dos et al. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, v. 217, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108946. Acesso em: 09 fev. 2026.
    • APA

      Santos, L. H. do N. dos, Pereira, B. da R., Rosset, M., Espinosa, D. C. R., & Botelho Junior, A. B. (2024). High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, 217, 1-13. doi:10.1016/j.mineng.2024.108946
    • NLM

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
    • Vancouver

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
  • Source: Minerals Engineering.

    Subjects: COMINUIÇÃO, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAMPARANA, Giovanni e KLEIN, B. e BERGERMAN, Maurício Guimarães. Impact of the feed particle size distribution and its packing characteristics on compression comminution. Minerals Engineering, v. 218, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108934. Acesso em: 09 fev. 2026.
    • APA

      Pamparana, G., Klein, B., & Bergerman, M. G. (2024). Impact of the feed particle size distribution and its packing characteristics on compression comminution. Minerals Engineering, 218, 10 . doi:10.1016/j.mineng.2024.108934
    • NLM

      Pamparana G, Klein B, Bergerman MG. Impact of the feed particle size distribution and its packing characteristics on compression comminution [Internet]. Minerals Engineering. 2024 ; 218 10 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108934
    • Vancouver

      Pamparana G, Klein B, Bergerman MG. Impact of the feed particle size distribution and its packing characteristics on compression comminution [Internet]. Minerals Engineering. 2024 ; 218 10 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108934
  • Source: Minerals Engineering. Unidade: EP

    Subjects: GRAVIDADE, MINÉRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface. Minerals Engineering, v. 210, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108641. Acesso em: 09 fev. 2026.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Zhou, J., & Galvin, K. P. (2024). Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface. Minerals Engineering, 210, 1-9. doi:10.1016/j.mineng.2024.108641
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface [Internet]. Minerals Engineering. 2024 ;210 1-9.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108641
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface [Internet]. Minerals Engineering. 2024 ;210 1-9.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108641
  • Source: Minerals Engineering. Unidade: EP

    Subjects: FLOTAÇÃO, HEMATITA, AMIDO, HIDRODINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Elaine Cristina e CHELGANI, Saeed Chehreh e LEAL FILHO, Laurindo de Salles. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. Minerals Engineering, v. 209, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108621. Acesso em: 09 fev. 2026.
    • APA

      Andrade, E. C., Chelgani, S. C., & Leal Filho, L. de S. (2024). A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. Minerals Engineering, 209, 1-13. doi:10.1016/j.mineng.2024.108621
    • NLM

      Andrade EC, Chelgani SC, Leal Filho L de S. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. [Internet]. Minerals Engineering. 2024 ;209 1-13.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108621
    • Vancouver

      Andrade EC, Chelgani SC, Leal Filho L de S. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. [Internet]. Minerals Engineering. 2024 ;209 1-13.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2024.108621
  • Source: Minerals Engineering. Unidade: EP

    Subjects: PROCESSAMENTO DE MINERAIS INDUSTRIAIS, MINÉRIOS, MOAGEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGERMAN, Maurício Guimarães et al. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test. Minerals Engineering, v. 203, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108359. Acesso em: 09 fev. 2026.
    • APA

      Bergerman, M. G., Pamparana, G., Delboni Júnior, H., & Klein, B. (2023). Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test. Minerals Engineering, 203, 1-9. doi:10.1016/j.mineng.2023.108359
    • NLM

      Bergerman MG, Pamparana G, Delboni Júnior H, Klein B. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test [Internet]. Minerals Engineering. 2023 ; 203 1-9.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108359
    • Vancouver

      Bergerman MG, Pamparana G, Delboni Júnior H, Klein B. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test [Internet]. Minerals Engineering. 2023 ; 203 1-9.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108359
  • Source: Minerals Engineering. Unidade: EP

    Subjects: LATOSSOLOS, FERTILIZANTES FOSFATADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      METOLINA, Patrícia et al. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering, v. 201, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108188. Acesso em: 09 fev. 2026.
    • APA

      Metolina, P., Andrade, R. S. de, Ramos, B., & Guardani, R. (2023). Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering, 201, 1-15. doi:10.1016/j.mineng.2023.108188
    • NLM

      Metolina P, Andrade RS de, Ramos B, Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions [Internet]. Minerals Engineering. 2023 ;201 1-15.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108188
    • Vancouver

      Metolina P, Andrade RS de, Ramos B, Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions [Internet]. Minerals Engineering. 2023 ;201 1-15.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108188
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MINÉRIOS, BRITAGEM, FLOTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation. Minerals Engineering, v. 199, p. 10 , 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108112. Acesso em: 09 fev. 2026.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Silva, K., Zhou, J., Galvin, K. P., & Filippov, L. O. (2023). Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation. Minerals Engineering, 199, 10 . doi:10.1016/j.mineng.2023.108112
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Silva K, Zhou J, Galvin KP, Filippov LO. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation [Internet]. Minerals Engineering. 2023 ; 199 10 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108112
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Silva K, Zhou J, Galvin KP, Filippov LO. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation [Internet]. Minerals Engineering. 2023 ; 199 10 .[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108112
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MINÉRIOS, FERRO, FLUIDIZAÇÃO, CISALHAMENTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering, v. 201, p. 12 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108187. Acesso em: 09 fev. 2026.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Rodrigues, O. M. S., Zhou, J., & Galvin, K. P. (2023). Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering, 201, 12 2023. doi:10.1016/j.mineng.2023.108187
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Rodrigues OMS, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters [Internet]. Minerals Engineering. 2023 ; 201 12 2023.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108187
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Rodrigues OMS, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters [Internet]. Minerals Engineering. 2023 ; 201 12 2023.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108187
  • Source: Minerals Engineering. Unidade: EP

    Subjects: HIDROMETALURGIA, NIÓBIO, TROCA IÔNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Tiago Fernandes de e TENÓRIO, Jorge Alberto Soares e ESPINOSA, Denise Crocce Romano. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, v. 201, n. 10, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108224. Acesso em: 09 fev. 2026.
    • APA

      Oliveira, T. F. de, Tenório, J. A. S., & Espinosa, D. C. R. (2023). An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, 201( 10), 1-15. doi:10.1016/j.mineng.2023.108224
    • NLM

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
    • Vancouver

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
  • Source: Minerals Engineering. Unidade: EP

    Subjects: FLOTAÇÃO DE MINÉRIOS, HEMATITA, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÉLIX, Lizbet León et al. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation. Minerals Engineering, v. 178, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107429. Acesso em: 09 fev. 2026.
    • APA

      Félix, L. L., Moreira, G. F., Leal Filho, L. de S., & Stavale, F. (2022). Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation. Minerals Engineering, 178, 1-10. doi:10.1016/j.mineng.2022.107429
    • NLM

      Félix LL, Moreira GF, Leal Filho L de S, Stavale F. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation [Internet]. Minerals Engineering. 2022 ;178 1-10.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107429
    • Vancouver

      Félix LL, Moreira GF, Leal Filho L de S, Stavale F. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation [Internet]. Minerals Engineering. 2022 ;178 1-10.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107429
  • Source: Minerals Engineering. Unidade: IQ

    Subjects: LÍTIO, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUARTAROLLI, Lucas Fonseca et al. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy. Minerals Engineering, v. 186, p. 1-8 art. 107747, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107747. Acesso em: 09 fev. 2026.
    • APA

      Quartarolli, L. F., Brandão, B. B. N. S., Silveira Junior, A. T., & Nakamura, M. (2022). Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy. Minerals Engineering, 186, 1-8 art. 107747. doi:10.1016/j.mineng.2022.107747
    • NLM

      Quartarolli LF, Brandão BBNS, Silveira Junior AT, Nakamura M. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy [Internet]. Minerals Engineering. 2022 ; 186 1-8 art. 107747.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107747
    • Vancouver

      Quartarolli LF, Brandão BBNS, Silveira Junior AT, Nakamura M. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy [Internet]. Minerals Engineering. 2022 ; 186 1-8 art. 107747.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107747
  • Source: Minerals Engineering. Unidade: EP

    Subjects: BATERIAS ELÉTRICAS, AUTOMÓVEIS, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIMARÃES, Lucas Fonseca e BOTELHO JUNIOR, Amilton Barbosa e ESPINOSA, Denise Crocce Romano. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, v. 183, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107597. Acesso em: 09 fev. 2026.
    • APA

      Guimarães, L. F., Botelho Junior, A. B., & Espinosa, D. C. R. (2022). Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, 183, 1-14. doi:10.1016/j.mineng.2022.107597
    • NLM

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
    • Vancouver

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
  • Source: Minerals Engineering. Unidade: EP

    Subjects: VANÁDIO, ADSORÇÃO, RESINAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VINCO, José Helber et al. Purification of an iron contaminated vanadium solution through ion exchange resins. Minerals Engineering, v. 176, n. Ja 2022, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.107337. Acesso em: 09 fev. 2026.
    • APA

      Vinco, J. H., Botelho Junior, A. B., Duarte, H. A., Espinosa, D. C. R., & Tenório, J. A. S. (2022). Purification of an iron contaminated vanadium solution through ion exchange resins. Minerals Engineering, 176( Ja 2022), 1-11. doi:10.1016/j.mineng.2021.107337
    • NLM

      Vinco JH, Botelho Junior AB, Duarte HA, Espinosa DCR, Tenório JAS. Purification of an iron contaminated vanadium solution through ion exchange resins [Internet]. Minerals Engineering. 2022 ; 176( Ja 2022): 1-11.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.107337
    • Vancouver

      Vinco JH, Botelho Junior AB, Duarte HA, Espinosa DCR, Tenório JAS. Purification of an iron contaminated vanadium solution through ion exchange resins [Internet]. Minerals Engineering. 2022 ; 176( Ja 2022): 1-11.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.107337
  • Source: Minerals Engineering. Unidade: EP

    Subjects: SOLVENTE, NÍQUEL, COBALTO

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA SANTANILLA, Adriana Johanny et al. Structure investigation for nickel and cobalt complexes formed during solvent extraction with the extractants Cyanex 272, Versatic 10 and their mixtures. Minerals Engineering, v. 160, n. Ja , 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2020.106691. Acesso em: 09 fev. 2026.
    • APA

      Murcia Santanilla, A. J., Aliprandini, P., Benvenuti , J., Tenório, J. A. S., & Espinosa, D. C. R. (2021). Structure investigation for nickel and cobalt complexes formed during solvent extraction with the extractants Cyanex 272, Versatic 10 and their mixtures. Minerals Engineering, 160( Ja ). doi:10.1016/j.mineng.2020.106691
    • NLM

      Murcia Santanilla AJ, Aliprandini P, Benvenuti J, Tenório JAS, Espinosa DCR. Structure investigation for nickel and cobalt complexes formed during solvent extraction with the extractants Cyanex 272, Versatic 10 and their mixtures [Internet]. Minerals Engineering. 2021 ; 160( Ja ):[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2020.106691
    • Vancouver

      Murcia Santanilla AJ, Aliprandini P, Benvenuti J, Tenório JAS, Espinosa DCR. Structure investigation for nickel and cobalt complexes formed during solvent extraction with the extractants Cyanex 272, Versatic 10 and their mixtures [Internet]. Minerals Engineering. 2021 ; 160( Ja ):[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2020.106691
  • Source: Minerals Engineering. Unidades: RUSP, EP

    Subjects: DESENVOLVIMENTO SUSTENTÁVEL, REJEITOS DE MINERAÇÃO, METAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTELHO JUNIOR, Amilton Barbosa et al. Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Minerals Engineering, v. 172, p. 1-20, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.107148. Acesso em: 09 fev. 2026.
    • APA

      Botelho Junior, A. B., Espinosa, D. C. R., Vaughan, J., & Tenório, J. A. S. (2021). Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Minerals Engineering, 172, 1-20. doi:10.1016/j.mineng.2021.107148
    • NLM

      Botelho Junior AB, Espinosa DCR, Vaughan J, Tenório JAS. Recovery of scandium from various sources: a critical review of the state of the art and future prospects [Internet]. Minerals Engineering. 2021 ; 172 1-20.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.107148
    • Vancouver

      Botelho Junior AB, Espinosa DCR, Vaughan J, Tenório JAS. Recovery of scandium from various sources: a critical review of the state of the art and future prospects [Internet]. Minerals Engineering. 2021 ; 172 1-20.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.107148
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MOAGEM, FERRO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills. Minerals Engineering, v. 163, p. 1-8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.106780. Acesso em: 09 fev. 2026.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Powell, M. S., & Tavares, L. M. M. (2021). Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills. Minerals Engineering, 163, 1-8. doi:10.1016/j.mineng.2021.106780
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Powell MS, Tavares LMM. Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills [Internet]. Minerals Engineering. 2021 ; 163 1-8.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.106780
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Powell MS, Tavares LMM. Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills [Internet]. Minerals Engineering. 2021 ; 163 1-8.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.mineng.2021.106780

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026