Filtros : "Mathematics of Control, Signals, and Systems" Limpar

Filtros



Refine with date range


  • Source: Mathematics of Control, Signals, and Systems. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Disponível em 2026-05-02Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORONA, Dario e GIAMBÓ, Roberto e PICCIONE, Paolo. A note on the regularity and the existence of Riemannian k-splines. Mathematics of Control, Signals, and Systems, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00498-025-00414-y. Acesso em: 23 jan. 2026.
    • APA

      Corona, D., Giambó, R., & Piccione, P. (2025). A note on the regularity and the existence of Riemannian k-splines. Mathematics of Control, Signals, and Systems. doi:10.1007/s00498-025-00414-y
    • NLM

      Corona D, Giambó R, Piccione P. A note on the regularity and the existence of Riemannian k-splines [Internet]. Mathematics of Control, Signals, and Systems. 2025 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00498-025-00414-y
    • Vancouver

      Corona D, Giambó R, Piccione P. A note on the regularity and the existence of Riemannian k-splines [Internet]. Mathematics of Control, Signals, and Systems. 2025 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00498-025-00414-y
  • Source: Mathematics of Control, Signals, and Systems. Unidade: ICMC

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Eduardo Fontoura e VARGAS, Alessandro do Nascimento. Quadratic costs and second moments of jump linear systems with general Markov chain. Mathematics of Control, Signals, and Systems, v. 23, n. 1–3, p. 141-157, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00498-011-0064-9. Acesso em: 23 jan. 2026.
    • APA

      Costa, E. F., & Vargas, A. do N. (2011). Quadratic costs and second moments of jump linear systems with general Markov chain. Mathematics of Control, Signals, and Systems, 23( 1–3), 141-157. doi:10.1007/s00498-011-0064-9
    • NLM

      Costa EF, Vargas A do N. Quadratic costs and second moments of jump linear systems with general Markov chain [Internet]. Mathematics of Control, Signals, and Systems. 2011 ; 23( 1–3): 141-157.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00498-011-0064-9
    • Vancouver

      Costa EF, Vargas A do N. Quadratic costs and second moments of jump linear systems with general Markov chain [Internet]. Mathematics of Control, Signals, and Systems. 2011 ; 23( 1–3): 141-157.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00498-011-0064-9
  • Source: Mathematics of Control, Signals, and Systems. Unidade: EP

    Subjects: CONTROLE (TEORIA DE SISTEMAS E CONTROLE), SISTEMAS LINEARES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Oswaldo Luiz do Valle e TUESTA, Esteban Fernández. H2-control and the separation principle for discrete-time Markovian jump linear systems. Mathematics of Control, Signals, and Systems, v. 16, n. 4, p. 320-350, 2004Tradução . . Acesso em: 23 jan. 2026.
    • APA

      Costa, O. L. do V., & Tuesta, E. F. (2004). H2-control and the separation principle for discrete-time Markovian jump linear systems. Mathematics of Control, Signals, and Systems, 16( 4), 320-350.
    • NLM

      Costa OL do V, Tuesta EF. H2-control and the separation principle for discrete-time Markovian jump linear systems. Mathematics of Control, Signals, and Systems. 2004 ; 16( 4): 320-350.[citado 2026 jan. 23 ]
    • Vancouver

      Costa OL do V, Tuesta EF. H2-control and the separation principle for discrete-time Markovian jump linear systems. Mathematics of Control, Signals, and Systems. 2004 ; 16( 4): 320-350.[citado 2026 jan. 23 ]
  • Source: Mathematics of Control, Signals, and Systems. Unidade: EP

    Assunto: MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Oswaldo Luiz do Valle e MARQUES, Ricardo Paulino. Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations. Mathematics of Control, Signals, and Systems, v. 12, p. 167-195, 1999Tradução . . Disponível em: https://doi.org/10.1007/pl00009849. Acesso em: 23 jan. 2026.
    • APA

      Costa, O. L. do V., & Marques, R. P. (1999). Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations. Mathematics of Control, Signals, and Systems, 12, 167-195. doi:10.1007/pl00009849
    • NLM

      Costa OL do V, Marques RP. Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations [Internet]. Mathematics of Control, Signals, and Systems. 1999 ; 12 167-195.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/pl00009849
    • Vancouver

      Costa OL do V, Marques RP. Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations [Internet]. Mathematics of Control, Signals, and Systems. 1999 ; 12 167-195.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/pl00009849

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026