Filtros : "Journal of Statistical Physics" Removido: "IME" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter. A Theory of Quantum (Statistical) Measurement. Journal of Statistical Physics, v. 190, n. 3, p. 26 , 2023Tradução . . Disponível em: https://doi.org/10.1007/s10955-023-03071-0. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. (2023). A Theory of Quantum (Statistical) Measurement. Journal of Statistical Physics, 190( 3), 26 . doi:10.1007/s10955-023-03071-0
    • NLM

      Wreszinski W. A Theory of Quantum (Statistical) Measurement [Internet]. Journal of Statistical Physics. 2023 ; 190( 3): 26 .[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-023-03071-0
    • Vancouver

      Wreszinski W. A Theory of Quantum (Statistical) Measurement [Internet]. Journal of Statistical Physics. 2023 ; 190( 3): 26 .[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-023-03071-0
  • Source: Journal of Statistical Physics. Unidade: IF

    Assunto: TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter Felipe. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions. Journal of Statistical Physics, v. 186, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10955-022-02872-z. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. F. (2022). A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions. Journal of Statistical Physics, 186. doi:10.1007/s10955-022-02872-z
    • NLM

      Wreszinski WF. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions [Internet]. Journal of Statistical Physics. 2022 ; 186[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-022-02872-z
    • Vancouver

      Wreszinski WF. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions [Internet]. Journal of Statistical Physics. 2022 ; 186[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-022-02872-z
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, ELETRODINÂMICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution. Journal of Statistical Physics, v. 182, n. 2, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10955-021-02706-4. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. (2021). Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution. Journal of Statistical Physics, 182( 2). doi:10.1007/s10955-021-02706-4
    • NLM

      Wreszinski W. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution [Internet]. Journal of Statistical Physics. 2021 ; 182( 2):[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02706-4
    • Vancouver

      Wreszinski W. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution [Internet]. Journal of Statistical Physics. 2021 ; 182( 2):[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02706-4
  • Source: Journal of Statistical Physics. Unidade: Interinstitucional de Pós-Graduação em Estatística

    Subjects: PROCESSOS EM MEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V e RODRÍGUEZ, Pablo Martín e SPEROTO, Adalto. The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, v. No 2020, n. 4, p. 1204-1217, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-020-02623-y. Acesso em: 07 out. 2025.
    • APA

      Junior, V. V., Rodríguez, P. M., & Speroto, A. (2020). The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, No 2020( 4), 1204-1217. doi:10.1007/s10955-020-02623-y
    • NLM

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
    • Vancouver

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, MECÂNICA ESTATÍSTICA, PROBABILIDADE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KROSCHINSKY, Wilhelm e MARCHETTI, Domingos Humberto Urbano. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse. Journal of Statistical Physics, v. 177, n. 2, p. 324–364, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10955-019-02370-9. Acesso em: 07 out. 2025.
    • APA

      Kroschinsky, W., & Marchetti, D. H. U. (2019). On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse. Journal of Statistical Physics, 177( 2), 324–364. doi:10.1007/s10955-019-02370-9
    • NLM

      Kroschinsky W, Marchetti DHU. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse [Internet]. Journal of Statistical Physics. 2019 ; 177( 2): 324–364.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-019-02370-9
    • Vancouver

      Kroschinsky W, Marchetti DHU. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse [Internet]. Journal of Statistical Physics. 2019 ; 177( 2): 324–364.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-019-02370-9
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANG, Mihyun e PACHON, Angelica e RODRIGUEZ, Pablo Martin. Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, v. Fe 2018, n. 3, p. 509-535, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10955-017-1940-6. Acesso em: 07 out. 2025.
    • APA

      Kang, M., Pachon, A., & Rodriguez, P. M. (2018). Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, Fe 2018( 3), 509-535. doi:10.1007/s10955-017-1940-6
    • NLM

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1940-6
    • Vancouver

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1940-6
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGLIARI, Elena et al. Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, v. No 2017, n. 4, p. 846-875, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10955-017-1892-x. Acesso em: 07 out. 2025.
    • APA

      Agliari, E., Pachon, A., Rodriguez, P. M., & Tavani, F. (2017). Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, No 2017( 4), 846-875. doi:10.1007/s10955-017-1892-x
    • NLM

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1892-x
    • Vancouver

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1892-x
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 07 out. 2025.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Source: Journal of Statistical Physics. Unidade: EACH

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, Marcelo Ventura. Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, v. 160, n. 2, p. 357-370, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-015-1266-1. Acesso em: 07 out. 2025.
    • APA

      Freire, M. V. (2015). Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, 160( 2), 357-370. doi:10.1007/s10955-015-1266-1
    • NLM

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-015-1266-1
    • Vancouver

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-015-1266-1
  • Source: Journal of Statistical Physics. Unidade: IF

    Assunto: CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter Felipe. The Ground State Energy per Site of the Quantum and Classical Edwards-Anderson Spin Glass in the Thermodynamic Limit. Journal of Statistical Physics, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-011-0401-x. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. F. (2012). The Ground State Energy per Site of the Quantum and Classical Edwards-Anderson Spin Glass in the Thermodynamic Limit. Journal of Statistical Physics. doi:10.1007/s10955-011-0401-x
    • NLM

      Wreszinski WF. The Ground State Energy per Site of the Quantum and Classical Edwards-Anderson Spin Glass in the Thermodynamic Limit [Internet]. Journal of Statistical Physics. 2012 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-011-0401-x
    • Vancouver

      Wreszinski WF. The Ground State Energy per Site of the Quantum and Classical Edwards-Anderson Spin Glass in the Thermodynamic Limit [Internet]. Journal of Statistical Physics. 2012 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-011-0401-x
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROCESSOS ESTOCÁSTICOS, PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTI, Cristian Favio e RODRÍGUEZ, Pablo Martín e SCHINAZI, Rinaldo B. A spatial stochastic model for rumor transmission. Journal of Statistical Physics, v. 147, n. 2, p. 375-381, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0469-y. Acesso em: 07 out. 2025.
    • APA

      Coletti, C. F., Rodríguez, P. M., & Schinazi, R. B. (2012). A spatial stochastic model for rumor transmission. Journal of Statistical Physics, 147( 2), 375-381. doi:10.1007/s10955-012-0469-y
    • NLM

      Coletti CF, Rodríguez PM, Schinazi RB. A spatial stochastic model for rumor transmission [Internet]. Journal of Statistical Physics. 2012 ; 147( 2): 375-381.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0469-y
    • Vancouver

      Coletti CF, Rodríguez PM, Schinazi RB. A spatial stochastic model for rumor transmission [Internet]. Journal of Statistical Physics. 2012 ; 147( 2): 375-381.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0469-y
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA), FÍSICA COMPUTACIONAL, MECANICA QUANTICA (TEORIA QUANTICA)

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHETTI, Domingos Humberto Urbano e WRESZINSKI, Walter Felipe. Anderson-like Transition for a Class of Random Sparse Models in d ≥ 2 Dimensions. Journal of Statistical Physics, v. 146, n. 5, p. 885-899, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0439-4. Acesso em: 07 out. 2025.
    • APA

      Marchetti, D. H. U., & Wreszinski, W. F. (2012). Anderson-like Transition for a Class of Random Sparse Models in d ≥ 2 Dimensions. Journal of Statistical Physics, 146( 5), 885-899. doi:10.1007/s10955-012-0439-4
    • NLM

      Marchetti DHU, Wreszinski WF. Anderson-like Transition for a Class of Random Sparse Models in d ≥ 2 Dimensions [Internet]. Journal of Statistical Physics. 2012 ; 146( 5): 885-899.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0439-4
    • Vancouver

      Marchetti DHU, Wreszinski WF. Anderson-like Transition for a Class of Random Sparse Models in d ≥ 2 Dimensions [Internet]. Journal of Statistical Physics. 2012 ; 146( 5): 885-899.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0439-4
  • Source: Journal of Statistical Physics. Unidade: FFCLRP

    Assunto: ECONOMIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Fernando Pigeard de Almeida e SCHÜTZ, Gunter M. Loss of ergodicity in the transition from annealed to quenched disorder in a finite kinetic ising model. Journal of Statistical Physics, v. 142, n. 5, p. 984-999, 2011Tradução . . Acesso em: 07 out. 2025.
    • APA

      Prado, F. P. de A., & Schütz, G. M. (2011). Loss of ergodicity in the transition from annealed to quenched disorder in a finite kinetic ising model. Journal of Statistical Physics, 142( 5), 984-999.
    • NLM

      Prado FP de A, Schütz GM. Loss of ergodicity in the transition from annealed to quenched disorder in a finite kinetic ising model. Journal of Statistical Physics. 2011 ; 142( 5): 984-999.[citado 2025 out. 07 ]
    • Vancouver

      Prado FP de A, Schütz GM. Loss of ergodicity in the transition from annealed to quenched disorder in a finite kinetic ising model. Journal of Statistical Physics. 2011 ; 142( 5): 984-999.[citado 2025 out. 07 ]
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: BIOFÍSICA, BIOMECÂNICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLDMAN, Carla. A Hopping mechanism for cargo transport by molecular motors on crowded microtubules. Journal of Statistical Physics, v. 140, n. 1, p. 1167–1181, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10955-010-0037-2. Acesso em: 07 out. 2025.
    • APA

      Goldman, C. (2010). A Hopping mechanism for cargo transport by molecular motors on crowded microtubules. Journal of Statistical Physics, 140( 1), 1167–1181. doi:10.1007/s10955-010-0037-2
    • NLM

      Goldman C. A Hopping mechanism for cargo transport by molecular motors on crowded microtubules [Internet]. Journal of Statistical Physics. 2010 ; 140( 1): 1167–1181.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-010-0037-2
    • Vancouver

      Goldman C. A Hopping mechanism for cargo transport by molecular motors on crowded microtubules [Internet]. Journal of Statistical Physics. 2010 ; 140( 1): 1167–1181.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-010-0037-2
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: BURACOS NEGROS, TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter Felipe e ABDALLA, Elcio. A precise formulation of the third law of thermodynamics. Journal of Statistical Physics, 2009Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/n2480r715g2w0046/fulltext.pdf. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. F., & Abdalla, E. (2009). A precise formulation of the third law of thermodynamics. Journal of Statistical Physics. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/n2480r715g2w0046/fulltext.pdf
    • NLM

      Wreszinski WF, Abdalla E. A precise formulation of the third law of thermodynamics [Internet]. Journal of Statistical Physics. 2009 ;[citado 2025 out. 07 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/n2480r715g2w0046/fulltext.pdf
    • Vancouver

      Wreszinski WF, Abdalla E. A precise formulation of the third law of thermodynamics [Internet]. Journal of Statistical Physics. 2009 ;[citado 2025 out. 07 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/n2480r715g2w0046/fulltext.pdf
  • Source: Journal of Statistical Physics. Unidade: IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHETTI, Domingos H. U. e CONTI, William Remo Pedroso e GUIDI, Leonardo Fernandes. Hierarchical spherical model from a geometric point of view. Journal of Statistical Physics, v. 132, n. 5, p. 811-838, 2008Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/k40732g70682xt47/fulltext.pdf. Acesso em: 07 out. 2025.
    • APA

      Marchetti, D. H. U., Conti, W. R. P., & Guidi, L. F. (2008). Hierarchical spherical model from a geometric point of view. Journal of Statistical Physics, 132( 5), 811-838. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/k40732g70682xt47/fulltext.pdf
    • NLM

      Marchetti DHU, Conti WRP, Guidi LF. Hierarchical spherical model from a geometric point of view [Internet]. Journal of Statistical Physics. 2008 ; 132( 5): 811-838.[citado 2025 out. 07 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/k40732g70682xt47/fulltext.pdf
    • Vancouver

      Marchetti DHU, Conti WRP, Guidi LF. Hierarchical spherical model from a geometric point of view [Internet]. Journal of Statistical Physics. 2008 ; 132( 5): 811-838.[citado 2025 out. 07 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/k40732g70682xt47/fulltext.pdf
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA, TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter Felipe e BOLINA, Oscar. A self-averaging "order parameter" for the Sherrington-Kirkpatrick spin glass model. Journal of Statistical Physics, 2004Tradução . . Disponível em: http://www.kluweronline.com/issn/0022-4715/current. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. F., & Bolina, O. (2004). A self-averaging "order parameter" for the Sherrington-Kirkpatrick spin glass model. Journal of Statistical Physics. Recuperado de http://www.kluweronline.com/issn/0022-4715/current
    • NLM

      Wreszinski WF, Bolina O. A self-averaging "order parameter" for the Sherrington-Kirkpatrick spin glass model [Internet]. Journal of Statistical Physics. 2004 ;[citado 2025 out. 07 ] Available from: http://www.kluweronline.com/issn/0022-4715/current
    • Vancouver

      Wreszinski WF, Bolina O. A self-averaging "order parameter" for the Sherrington-Kirkpatrick spin glass model [Internet]. Journal of Statistical Physics. 2004 ;[citado 2025 out. 07 ] Available from: http://www.kluweronline.com/issn/0022-4715/current
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Assunto: MATEMÁTICA APLICADA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHOR, Ricardo S. e O'CARROLL, Michael. Transfer matrix spectrum for lattice classical O(N) ferromagnetic spin systems at high temperature. Journal of Statistical Physics, v. 190, n. 1/2, p. 279-288, 2002Tradução . . Acesso em: 07 out. 2025.
    • APA

      Schor, R. S., & O'Carroll, M. (2002). Transfer matrix spectrum for lattice classical O(N) ferromagnetic spin systems at high temperature. Journal of Statistical Physics, 190( 1/2), 279-288.
    • NLM

      Schor RS, O'Carroll M. Transfer matrix spectrum for lattice classical O(N) ferromagnetic spin systems at high temperature. Journal of Statistical Physics. 2002 ; 190( 1/2): 279-288.[citado 2025 out. 07 ]
    • Vancouver

      Schor RS, O'Carroll M. Transfer matrix spectrum for lattice classical O(N) ferromagnetic spin systems at high temperature. Journal of Statistical Physics. 2002 ; 190( 1/2): 279-288.[citado 2025 out. 07 ]
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: MODELO DE ISING, FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e GOLDBAUM, Pedro Silva. On the distribution and gap structure of Lee-Yang zeros for the Ising model: periodic and aperiodic couplings. Journal of Statistical Physics, v. 103, n. 5-6, p. 857-891, 2001Tradução . . Acesso em: 07 out. 2025.
    • APA

      Barata, J. C. A., & Goldbaum, P. S. (2001). On the distribution and gap structure of Lee-Yang zeros for the Ising model: periodic and aperiodic couplings. Journal of Statistical Physics, 103( 5-6), 857-891.
    • NLM

      Barata JCA, Goldbaum PS. On the distribution and gap structure of Lee-Yang zeros for the Ising model: periodic and aperiodic couplings. Journal of Statistical Physics. 2001 ; 103( 5-6): 857-891.[citado 2025 out. 07 ]
    • Vancouver

      Barata JCA, Goldbaum PS. On the distribution and gap structure of Lee-Yang zeros for the Ising model: periodic and aperiodic couplings. Journal of Statistical Physics. 2001 ; 103( 5-6): 857-891.[citado 2025 out. 07 ]
  • Source: Journal of Statistical Physics. Unidade: IF

    Assunto: FÍSICA TEÓRICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOUABCI, Mauricio Borges e CARNEIRO, C. E. I. Random-cluster representation for the Blume-Capel model. Journal of Statistical Physics, v. 100, n. 5-6, p. 805-827, 2000Tradução . . Acesso em: 07 out. 2025.
    • APA

      Bouabci, M. B., & Carneiro, C. E. I. (2000). Random-cluster representation for the Blume-Capel model. Journal of Statistical Physics, 100( 5-6), 805-827.
    • NLM

      Bouabci MB, Carneiro CEI. Random-cluster representation for the Blume-Capel model. Journal of Statistical Physics. 2000 ; 100( 5-6): 805-827.[citado 2025 out. 07 ]
    • Vancouver

      Bouabci MB, Carneiro CEI. Random-cluster representation for the Blume-Capel model. Journal of Statistical Physics. 2000 ; 100( 5-6): 805-827.[citado 2025 out. 07 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025