Filtros : "Journal of Statistical Physics" Removido: "MECÂNICA ESTATÍSTICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Gustavo Oshiro de e MACHADO, Fábio Prates. The coverage ratio of the frog model on complete graphs. Journal of Statistical Physics, v. 190, n. artigo 147, p. 1-11, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10955-023-03156-w. Acesso em: 07 out. 2025.
    • APA

      Carvalho, G. O. de, & Machado, F. P. (2023). The coverage ratio of the frog model on complete graphs. Journal of Statistical Physics, 190( artigo 147), 1-11. doi:10.1007/s10955-023-03156-w
    • NLM

      Carvalho GO de, Machado FP. The coverage ratio of the frog model on complete graphs [Internet]. Journal of Statistical Physics. 2023 ; 190( artigo 147): 1-11.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-023-03156-w
    • Vancouver

      Carvalho GO de, Machado FP. The coverage ratio of the frog model on complete graphs [Internet]. Journal of Statistical Physics. 2023 ; 190( artigo 147): 1-11.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-023-03156-w
  • Source: Journal of Statistical Physics. Unidade: IF

    Assunto: TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter Felipe. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions. Journal of Statistical Physics, v. 186, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10955-022-02872-z. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. F. (2022). A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions. Journal of Statistical Physics, 186. doi:10.1007/s10955-022-02872-z
    • NLM

      Wreszinski WF. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions [Internet]. Journal of Statistical Physics. 2022 ; 186[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-022-02872-z
    • Vancouver

      Wreszinski WF. A Relation of Thermodynamic Relevance Between the Superadditivity, Concavity and Homogeneity Properties of Real-Valued Functions [Internet]. Journal of Statistical Physics. 2022 ; 186[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-022-02872-z
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e PEIXOTO, Gabriel Ribeiro da Cruz. Infinite level GREM-like K-processes existence and convergence. Journal of Statistical Physics, v. 182, n. article 50, p. 1-31, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10955-021-02713-5. Acesso em: 07 out. 2025.
    • APA

      Fontes, L. R., & Peixoto, G. R. da C. (2021). Infinite level GREM-like K-processes existence and convergence. Journal of Statistical Physics, 182( article 50), 1-31. doi:10.1007/s10955-021-02713-5
    • NLM

      Fontes LR, Peixoto GR da C. Infinite level GREM-like K-processes existence and convergence [Internet]. Journal of Statistical Physics. 2021 ; 182( article 50): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02713-5
    • Vancouver

      Fontes LR, Peixoto GR da C. Infinite level GREM-like K-processes existence and convergence [Internet]. Journal of Statistical Physics. 2021 ; 182( article 50): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02713-5
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, ELETRODINÂMICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, Walter. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution. Journal of Statistical Physics, v. 182, n. 2, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10955-021-02706-4. Acesso em: 07 out. 2025.
    • APA

      Wreszinski, W. (2021). Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution. Journal of Statistical Physics, 182( 2). doi:10.1007/s10955-021-02706-4
    • NLM

      Wreszinski W. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution [Internet]. Journal of Statistical Physics. 2021 ; 182( 2):[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02706-4
    • Vancouver

      Wreszinski W. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution [Internet]. Journal of Statistical Physics. 2021 ; 182( 2):[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02706-4
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE RAMIFICAÇÃO, GENÉTICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V. e MACHADO, Fábio Prates e ROLDÁN-CORREA, Alejandro. Evaluating dispersion strategies in growth models subject to geometric catastrophes. Journal of Statistical Physics, v. 183, n. Article 30, p. 1-15, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10955-021-02759-5. Acesso em: 07 out. 2025.
    • APA

      Junior, V. V., Machado, F. P., & Roldán-Correa, A. (2021). Evaluating dispersion strategies in growth models subject to geometric catastrophes. Journal of Statistical Physics, 183( Article 30), 1-15. doi:10.1007/s10955-021-02759-5
    • NLM

      Junior VV, Machado FP, Roldán-Correa A. Evaluating dispersion strategies in growth models subject to geometric catastrophes [Internet]. Journal of Statistical Physics. 2021 ; 183( Article 30): 1-15.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02759-5
    • Vancouver

      Junior VV, Machado FP, Roldán-Correa A. Evaluating dispersion strategies in growth models subject to geometric catastrophes [Internet]. Journal of Statistical Physics. 2021 ; 183( Article 30): 1-15.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-021-02759-5
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e ROLLA, Leonardo T. Slow-to-start traffic model: traffic saturation and scaling limits. Journal of Statistical Physics, v. 180, n. 1-6, p. 935-953, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-020-02555-7. Acesso em: 07 out. 2025.
    • APA

      Ferrari, P. A., & Rolla, L. T. (2020). Slow-to-start traffic model: traffic saturation and scaling limits. Journal of Statistical Physics, 180( 1-6), 935-953. doi:10.1007/s10955-020-02555-7
    • NLM

      Ferrari PA, Rolla LT. Slow-to-start traffic model: traffic saturation and scaling limits [Internet]. Journal of Statistical Physics. 2020 ; 180( 1-6): 935-953.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-020-02555-7
    • Vancouver

      Ferrari PA, Rolla LT. Slow-to-start traffic model: traffic saturation and scaling limits [Internet]. Journal of Statistical Physics. 2020 ; 180( 1-6): 935-953.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-020-02555-7
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: NEURÔNIOS, SINAPSE, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio et al. A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, v. 178, n. 4, p. 869-892, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-019-02467-1. Acesso em: 07 out. 2025.
    • APA

      Galves, A., Löcherbach, E., Pouzat, C., & Presutti, E. (2020). A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, 178( 4), 869-892. doi:10.1007/s10955-019-02467-1
    • NLM

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
    • Vancouver

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PROCESSOS ALEATÓRIOS, BIOMATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto et al. Phase transition for infinite systems of spiking neurons. Journal of Statistical Physics, v. 172, n. 6, p. 1564–1575, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10955-018-2118-6. Acesso em: 07 out. 2025.
    • APA

      Ferrari, P. A., Galves, A., Grigorescu, I., & Löcherbach, E. (2018). Phase transition for infinite systems of spiking neurons. Journal of Statistical Physics, 172( 6), 1564–1575. doi:10.1007/s10955-018-2118-6
    • NLM

      Ferrari PA, Galves A, Grigorescu I, Löcherbach E. Phase transition for infinite systems of spiking neurons [Internet]. Journal of Statistical Physics. 2018 ; 172( 6): 1564–1575.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-018-2118-6
    • Vancouver

      Ferrari PA, Galves A, Grigorescu I, Löcherbach E. Phase transition for infinite systems of spiking neurons [Internet]. Journal of Statistical Physics. 2018 ; 172( 6): 1564–1575.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-018-2118-6
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS, ANÁLISE DE SOBREVIVÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e ROLDÁN CORREA, Alejandro e VARGAS JÚNIOR, Valdivino. Colonization and collapse on homogeneous trees. Journal of Statistical Physics, v. 173, n. 5, p. 1386–1407, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10955-018-2161-3. Acesso em: 07 out. 2025.
    • APA

      Machado, F. P., Roldán Correa, A., & Vargas Júnior, V. (2018). Colonization and collapse on homogeneous trees. Journal of Statistical Physics, 173( 5), 1386–1407. doi:10.1007/s10955-018-2161-3
    • NLM

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-018-2161-3
    • Vancouver

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-018-2161-3
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANG, Mihyun e PACHON, Angelica e RODRIGUEZ, Pablo Martin. Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, v. Fe 2018, n. 3, p. 509-535, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10955-017-1940-6. Acesso em: 07 out. 2025.
    • APA

      Kang, M., Pachon, A., & Rodriguez, P. M. (2018). Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, Fe 2018( 3), 509-535. doi:10.1007/s10955-017-1940-6
    • NLM

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1940-6
    • Vancouver

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1940-6
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGLIARI, Elena et al. Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, v. No 2017, n. 4, p. 846-875, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10955-017-1892-x. Acesso em: 07 out. 2025.
    • APA

      Agliari, E., Pachon, A., Rodriguez, P. M., & Tavani, F. (2017). Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, No 2017( 4), 846-875. doi:10.1007/s10955-017-1892-x
    • NLM

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1892-x
    • Vancouver

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-017-1892-x
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 07 out. 2025.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE RAMIFICAÇÃO, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS JUNIOR, Valdivino e MACHADO, Fábio Prates e ROLDÁN CORREA, Alejandro. Dispersion as a survival strategy. Journal of Statistical Physics, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1571-3. Acesso em: 07 out. 2025.
    • APA

      Vargas Junior, V., Machado, F. P., & Roldán Correa, A. (2016). Dispersion as a survival strategy. Journal of Statistical Physics. doi:10.1007/s10955-016-1571-3
    • NLM

      Vargas Junior V, Machado FP, Roldán Correa A. Dispersion as a survival strategy [Internet]. Journal of Statistical Physics. 2016 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1571-3
    • Vancouver

      Vargas Junior V, Machado FP, Roldán Correa A. Dispersion as a survival strategy [Internet]. Journal of Statistical Physics. 2016 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-016-1571-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, v. 158, n. 4, p. 866-902, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1145-1. Acesso em: 07 out. 2025.
    • APA

      De Masi, A., Galves, A., Löcherbach, E., & Presutti, E. (2015). Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, 158( 4), 866-902. doi:10.1007/s10955-014-1145-1
    • NLM

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
    • Vancouver

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
  • Source: Journal of Statistical Physics. Unidade: EACH

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, Marcelo Ventura. Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, v. 160, n. 2, p. 357-370, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-015-1266-1. Acesso em: 07 out. 2025.
    • APA

      Freire, M. V. (2015). Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, 160( 2), 357-370. doi:10.1007/s10955-015-1266-1
    • NLM

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-015-1266-1
    • Vancouver

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-015-1266-1
  • Source: Journal of Statistical Physics. Unidades: IME, IF

    Subjects: PROCESSOS ALEATÓRIOS, PROCESSOS ESTOCÁSTICOS, MODELOS DE MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato et al. Phase transitions in layered systems. Journal of Statistical Physics, v. 157, n. 3, p. 407-421, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1090-z. Acesso em: 07 out. 2025.
    • APA

      Fontes, L. R., Marchetti, D. H. U., Merola, I., Presutti, E., & Vares, M. E. (2014). Phase transitions in layered systems. Journal of Statistical Physics, 157( 3), 407-421. doi:10.1007/s10955-014-1090-z
    • NLM

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Phase transitions in layered systems [Internet]. Journal of Statistical Physics. 2014 ; 157( 3): 407-421.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-014-1090-z
    • Vancouver

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Phase transitions in layered systems [Internet]. Journal of Statistical Physics. 2014 ; 157( 3): 407-421.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-014-1090-z
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SISKO, V e YAMBARTSEV, Anatoli e ZOHREN, S. Growth of uniform infinite causal triangulations. Journal of Statistical Physics, v. 150, n. 2, p. 353-374, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0665-9. Acesso em: 07 out. 2025.
    • APA

      Sisko, V., Yambartsev, A., & Zohren, S. (2013). Growth of uniform infinite causal triangulations. Journal of Statistical Physics, 150( 2), 353-374. doi:10.1007/s10955-012-0665-9
    • NLM

      Sisko V, Yambartsev A, Zohren S. Growth of uniform infinite causal triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 2): 353-374.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0665-9
    • Vancouver

      Sisko V, Yambartsev A, Zohren S. Growth of uniform infinite causal triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 2): 353-374.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-012-0665-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, v. 151, n. 5, p. 896-921, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0733-9. Acesso em: 07 out. 2025.
    • APA

      Galves, A., & Löcherbach, E. (2013). Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, 151( 5), 896-921. doi:10.1007/s10955-013-0733-9
    • NLM

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
    • Vancouver

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUETZ, G. M. Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current. Journal of Statistical Physics, v. 152, n. 1, p. 93-111, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0758-0. Acesso em: 07 out. 2025.
    • APA

      Belitsky, V., & Schuetz, G. M. (2013). Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current. Journal of Statistical Physics, 152( 1), 93-111. doi:10.1007/s10955-013-0758-0
    • NLM

      Belitsky V, Schuetz GM. Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current [Internet]. Journal of Statistical Physics. 2013 ; 152( 1): 93-111.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0758-0
    • Vancouver

      Belitsky V, Schuetz GM. Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current [Internet]. Journal of Statistical Physics. 2013 ; 152( 1): 93-111.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0758-0
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, M e SUHOV, Y e IAMBARTSEV, Anatoli. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations. Journal of Statistical Physics, v. 150, n. 4, p. 671-677, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0698-8. Acesso em: 07 out. 2025.
    • APA

      Kelbert, M., Suhov, Y., & Iambartsev, A. (2013). A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations. Journal of Statistical Physics, 150( 4), 671-677. doi:10.1007/s10955-013-0698-8
    • NLM

      Kelbert M, Suhov Y, Iambartsev A. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 4): 671-677.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0698-8
    • Vancouver

      Kelbert M, Suhov Y, Iambartsev A. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 4): 671-677.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10955-013-0698-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025