Filtros : "Journal of Statistical Mechanics: Theory and Experiment" Removido: "IFSC" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Mechanics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COMUNICAÇÃO, REDES DE INFORMAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINEDA, Aruane Mello et al. Machine learning-based prediction of Q-voter model in complex networks. Journal of Statistical Mechanics, v. 2023, p. 1-33, 2023Tradução . . Disponível em: https://doi.org/10.1088/1742-5468/ad06a6. Acesso em: 07 out. 2025.
    • APA

      Pineda, A. M., Kent, P., Connaughton, C., & Rodrigues, F. A. (2023). Machine learning-based prediction of Q-voter model in complex networks. Journal of Statistical Mechanics, 2023, 1-33. doi:10.1088/1742-5468/ad06a6
    • NLM

      Pineda AM, Kent P, Connaughton C, Rodrigues FA. Machine learning-based prediction of Q-voter model in complex networks [Internet]. Journal of Statistical Mechanics. 2023 ; 2023 1-33.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/ad06a6
    • Vancouver

      Pineda AM, Kent P, Connaughton C, Rodrigues FA. Machine learning-based prediction of Q-voter model in complex networks [Internet]. Journal of Statistical Mechanics. 2023 ; 2023 1-33.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/ad06a6
  • Source: Journal of Statistical Mechanics. Unidade: IF

    Subjects: TRANSICOES DE FASE, SUPERSIMETRIA, TEORIA DE CAMPOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIENZOBAZ, P F e GOMES, Pedro R S e GOMES, Marcelo Otávio Caminha. Stochastic quantization of the spherical model and supersymmetry. Journal of Statistical Mechanics, v. 2013, n. 9, p. P09018/1-P09018/21, 2013Tradução . . Disponível em: https://doi.org/10.1088/1742-5468/2013/09/P09018. Acesso em: 07 out. 2025.
    • APA

      Bienzobaz, P. F., Gomes, P. R. S., & Gomes, M. O. C. (2013). Stochastic quantization of the spherical model and supersymmetry. Journal of Statistical Mechanics, 2013( 9), P09018/1-P09018/21. doi:10.1088/1742-5468/2013/09/P09018
    • NLM

      Bienzobaz PF, Gomes PRS, Gomes MOC. Stochastic quantization of the spherical model and supersymmetry [Internet]. Journal of Statistical Mechanics. 2013 ; 2013( 9): P09018/1-P09018/21.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/2013/09/P09018
    • Vancouver

      Bienzobaz PF, Gomes PRS, Gomes MOC. Stochastic quantization of the spherical model and supersymmetry [Internet]. Journal of Statistical Mechanics. 2013 ; 2013( 9): P09018/1-P09018/21.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/2013/09/P09018
  • Source: Journal of Statistical Mechanics. Unidade: IF

    Assunto: PERCOLAÇÃO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, David R de e TOMÉ, Tânia e ZIFF, Robert M. A new scale-invariant ratio and finite-size scaling for the stochastic susceptible–infected–recovered model. Journal of Statistical Mechanics, v. 44, p. P03006, 2011Tradução . . Disponível em: https://doi.org/10.1088/1742-5468/2011/03/p03006. Acesso em: 07 out. 2025.
    • APA

      Souza, D. R. de, Tomé, T., & Ziff, R. M. (2011). A new scale-invariant ratio and finite-size scaling for the stochastic susceptible–infected–recovered model. Journal of Statistical Mechanics, 44, P03006. doi:10.1088/1742-5468/2011/03/p03006
    • NLM

      Souza DR de, Tomé T, Ziff RM. A new scale-invariant ratio and finite-size scaling for the stochastic susceptible–infected–recovered model [Internet]. Journal of Statistical Mechanics. 2011 ; 44 P03006.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/2011/03/p03006
    • Vancouver

      Souza DR de, Tomé T, Ziff RM. A new scale-invariant ratio and finite-size scaling for the stochastic susceptible–infected–recovered model [Internet]. Journal of Statistical Mechanics. 2011 ; 44 P03006.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1742-5468/2011/03/p03006

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025