Filtros : "Journal of Dynamics and Differential Equations" Removido: "Financiado pelo CNPq" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 17 jun. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-025-10418-6. Acesso em: 17 jun. 2025.
    • APA

      Bezerra, F. D. M., López-Lázaro, H., & Takaessu Junior, C. R. (2025). Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-025-10418-6
    • NLM

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
    • Vancouver

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 17 jun. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2024). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 17 jun. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, v. 36, p. 3711-3742, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10339-2. Acesso em: 17 jun. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2024). The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, 36, 3711-3742. doi:10.1007/s10884-023-10339-2
    • NLM

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
    • Vancouver

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Disponível em 2025-08-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 17 jun. 2025.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, v. 36, n. 4, p. 3481-3534, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 17 jun. 2025.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2024). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 36( 4), 3481-3534. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 17 jun. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e NAKASSIMA, Guilherme Kenji. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, v. 34, p. 2841-2865, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09854-3. Acesso em: 17 jun. 2025.
    • APA

      Rodrigues, H. M., Caraballo, T., & Nakassima, G. K. (2022). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, 34, 2841-2865. doi:10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 17 jun. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, v. 33, n. 4, p. 1779-1821, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09871-2. Acesso em: 17 jun. 2025.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, 33( 4), 1779-1821. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: PROCESSOS ESTOCÁSTICOS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Lynnyngs K. e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10021-5. Acesso em: 17 jun. 2025.
    • APA

      Arruda, L. K., Chemetov, N. V., & Cipriano, F. (2021). Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-021-10021-5
    • NLM

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10021-5
    • Vancouver

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10021-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 17 jun. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e TROFIMCHUK, Sergei. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 921-939, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09748-z. Acesso em: 17 jun. 2025.
    • APA

      Morales, E. A. H., & Trofimchuk, S. (2020). Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, 32( 2), 921-939. doi:10.1007/s10884-019-09748-z
    • NLM

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
    • Vancouver

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, v. 31, n. 1, p. 207-236, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9682-y. Acesso em: 17 jun. 2025.
    • APA

      Federson, M., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9604-4. Acesso em: 17 jun. 2025.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 17 jun. 2025.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9598-y. Acesso em: 17 jun. 2025.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 17 jun. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 17 jun. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9486-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025