Filtros : "Journal of Dynamics and Differential Equations" Removido: "Espanha" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 17 jun. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 17 jun. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2024). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 17 jun. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 17 jun. 2025.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 17 jun. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: PROCESSOS ESTOCÁSTICOS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Lynnyngs K. e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10021-5. Acesso em: 17 jun. 2025.
    • APA

      Arruda, L. K., Chemetov, N. V., & Cipriano, F. (2021). Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-021-10021-5
    • NLM

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10021-5
    • Vancouver

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-021-10021-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 605-614, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09750-5. Acesso em: 17 jun. 2025.
    • APA

      Federson, M., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 17 jun. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 17 jun. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 17 jun. 2025.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e TROFIMCHUK, Sergei. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 921-939, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09748-z. Acesso em: 17 jun. 2025.
    • APA

      Morales, E. A. H., & Trofimchuk, S. (2020). Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, 32( 2), 921-939. doi:10.1007/s10884-019-09748-z
    • NLM

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
    • Vancouver

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, v. 31, n. 1, p. 207-236, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9682-y. Acesso em: 17 jun. 2025.
    • APA

      Federson, M., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9604-4. Acesso em: 17 jun. 2025.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9598-y. Acesso em: 17 jun. 2025.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS DA FÍSICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e CARDOSO, João Lopes e TONON, Durval José. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1899-1920, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9636-9. Acesso em: 17 jun. 2025.
    • APA

      Carvalho, T. de, Cardoso, J. L., & Tonon, D. J. (2018). Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, 30( 4), 1899-1920. doi:10.1007/s10884-017-9636-9
    • NLM

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
    • Vancouver

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 17 jun. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 17 jun. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 17 jun. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, v. 26, n. 4, p. 871-888, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10884-014-9412-z. Acesso em: 17 jun. 2025.
    • APA

      Aragão, G. da S., Pereira, A. L., & Pereira, M. C. (2014). Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, 26( 4), 871-888. doi:10.1007/s10884-014-9412-z
    • NLM

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
    • Vancouver

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 17 jun. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1007/s10884-012-9269-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025