Filtros : "Journal of Dynamics and Differential Equations" Removido: "Indexado no Web of Science" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 28 nov. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, v. 36, p. 3711-3742, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10339-2. Acesso em: 28 nov. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2024). The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, 36, 3711-3742. doi:10.1007/s10884-023-10339-2
    • NLM

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
    • Vancouver

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 28 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e TROFIMCHUK, Sergei. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 921-939, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09748-z. Acesso em: 28 nov. 2025.
    • APA

      Morales, E. A. H., & Trofimchuk, S. (2020). Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, 32( 2), 921-939. doi:10.1007/s10884-019-09748-z
    • NLM

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
    • Vancouver

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 28 nov. 2025.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9598-y. Acesso em: 28 nov. 2025.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS DA FÍSICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e CARDOSO, João Lopes e TONON, Durval José. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1899-1920, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9636-9. Acesso em: 28 nov. 2025.
    • APA

      Carvalho, T. de, Cardoso, J. L., & Tonon, D. J. (2018). Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, 30( 4), 1899-1920. doi:10.1007/s10884-017-9636-9
    • NLM

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
    • Vancouver

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 28 nov. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 28 nov. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 28 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 28 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
  • Source: Journal of Dynamics and Differential Equations. Unidades: IME, IF

    Assunto: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e MALTA, Coraci Pereira e PAKDAMAN, K. Metastable periodic patterns in singularly perturbed delayed equations. Journal of Dynamics and Differential Equations, v. 22, n. 2, p. 203-252, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9158-1. Acesso em: 28 nov. 2025.
    • APA

      Ragazzo, C. G., Malta, C. P., & Pakdaman, K. (2010). Metastable periodic patterns in singularly perturbed delayed equations. Journal of Dynamics and Differential Equations, 22( 2), 203-252. doi:10.1007/s10884-010-9158-1
    • NLM

      Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed delayed equations [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 203-252.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9158-1
    • Vancouver

      Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed delayed equations [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 203-252.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9158-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 473-489, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9160-7. Acesso em: 28 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2010). On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, 22( 3), 473-489. doi:10.1007/s10884-010-9160-7
    • NLM

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
    • Vancouver

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e TERRA, Gláucio. Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, v. 22, n. 2, p. 193-201, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-009-9137-6. Acesso em: 28 nov. 2025.
    • APA

      Oliva, W. M., & Terra, G. (2010). Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, 22( 2), 193-201. doi:10.1007/s10884-009-9137-6
    • NLM

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-009-9137-6
    • Vancouver

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-009-9137-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e ROCHA, Carlos. Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 509-532, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9177-y. Acesso em: 28 nov. 2025.
    • APA

      Oliva, W. M., & Rocha, C. (2010). Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, 22( 3), 509-532. doi:10.1007/s10884-010-9177-y
    • NLM

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
    • Vancouver

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini et al. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, v. 18, n. 3, p. 767-814, 2006Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf. Acesso em: 28 nov. 2025.
    • APA

      Bruschi, S. M., Cholewa, J. W., Carvalho, A. N. de, & Dlotko, T. (2006). Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, 18( 3), 767-814. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • NLM

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 28 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • Vancouver

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 28 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLÀ-MORALES, J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, v. 18, n. 4, p. 961-973, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10884-006-9050-1. Acesso em: 28 nov. 2025.
    • APA

      Rodrigues, H. M., & Solà-Morales, J. (2006). Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, 18( 4), 961-973. doi:10.1007/s10884-006-9050-1
    • NLM

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
    • Vancouver

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUTIERREZ, Carlos e SOTOMAYOR, Jorge e GARCIA, Ronaldo. Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, v. 16, n. 2, p. 321-346, 2004Tradução . . Disponível em: https://doi.org/10.1007/s10884-004-2783-9. Acesso em: 28 nov. 2025.
    • APA

      Gutierrez, C., Sotomayor, J., & Garcia, R. (2004). Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, 16( 2), 321-346. doi:10.1007/s10884-004-2783-9
    • NLM

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
    • Vancouver

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HALE, J. K. e AKI, Sueli Mieko Tanaka. Square and pulse waves with two delays. Journal of Dynamics and Differential Equations, v. 12, n. 1, p. 1-30, 2000Tradução . . Disponível em: http://www.springerlink.com/content/t2457390k48u3665/fulltext.pdf. Acesso em: 28 nov. 2025.
    • APA

      Hale, J. K., & Aki, S. M. T. (2000). Square and pulse waves with two delays. Journal of Dynamics and Differential Equations, 12( 1), 1-30. Recuperado de http://www.springerlink.com/content/t2457390k48u3665/fulltext.pdf
    • NLM

      Hale JK, Aki SMT. Square and pulse waves with two delays [Internet]. Journal of Dynamics and Differential Equations. 2000 ; 12( 1): 1-30.[citado 2025 nov. 28 ] Available from: http://www.springerlink.com/content/t2457390k48u3665/fulltext.pdf
    • Vancouver

      Hale JK, Aki SMT. Square and pulse waves with two delays [Internet]. Journal of Dynamics and Differential Equations. 2000 ; 12( 1): 1-30.[citado 2025 nov. 28 ] Available from: http://www.springerlink.com/content/t2457390k48u3665/fulltext.pdf
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Sérgio Muniz. Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, v. 11, n. 2, p. 279-296, 1999Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1021929413376. Acesso em: 28 nov. 2025.
    • APA

      Oliva, S. M. (1999). Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, 11( 2), 279-296. doi:10.1023%2FA%3A1021929413376
    • NLM

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
    • Vancouver

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025