Filtros : "Graphs and Combinatorics" Limpar

Filtros



Refine with date range


  • Source: Graphs and Combinatorics. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, MÉTODOS DE DECOMPOSIÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTLER, Fábio Happ et al. On the structure of a smallest counterexample and a new class verifying the 2-decomposition conjecture. Graphs and Combinatorics, v. 40, n. artigo 102, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00373-024-02833-1. Acesso em: 21 jan. 2026.
    • APA

      Botler, F. H., Jiménez, A., Sambinelli, M., & Wakabayashi, Y. (2024). On the structure of a smallest counterexample and a new class verifying the 2-decomposition conjecture. Graphs and Combinatorics, 40( artigo 102), 1-21. doi:10.1007/s00373-024-02833-1
    • NLM

      Botler FH, Jiménez A, Sambinelli M, Wakabayashi Y. On the structure of a smallest counterexample and a new class verifying the 2-decomposition conjecture [Internet]. Graphs and Combinatorics. 2024 ; 40( artigo 102): 1-21.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00373-024-02833-1
    • Vancouver

      Botler FH, Jiménez A, Sambinelli M, Wakabayashi Y. On the structure of a smallest counterexample and a new class verifying the 2-decomposition conjecture [Internet]. Graphs and Combinatorics. 2024 ; 40( artigo 102): 1-21.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00373-024-02833-1
  • Source: Graphs and Combinatorics. Unidade: IME

    Subjects: OTIMIZAÇÃO COMBINATÓRIA, TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Cristina Gomes et al. Counting Hamiltonian cycles in the matroid basis graph. Graphs and Combinatorics, v. 35, n. 2, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00373-019-02011-8. Acesso em: 21 jan. 2026.
    • APA

      Fernandes, C. G., Hernández Vélez, C., Pina Júnior, J. C. de, & Ramírez Alfonsín, J. L. (2019). Counting Hamiltonian cycles in the matroid basis graph. Graphs and Combinatorics, 35( 2). doi:10.1007/s00373-019-02011-8
    • NLM

      Fernandes CG, Hernández Vélez C, Pina Júnior JC de, Ramírez Alfonsín JL. Counting Hamiltonian cycles in the matroid basis graph [Internet]. Graphs and Combinatorics. 2019 ; 35( 2):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00373-019-02011-8
    • Vancouver

      Fernandes CG, Hernández Vélez C, Pina Júnior JC de, Ramírez Alfonsín JL. Counting Hamiltonian cycles in the matroid basis graph [Internet]. Graphs and Combinatorics. 2019 ; 35( 2):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00373-019-02011-8
  • Source: Graphs and Combinatorics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAXELL, Penny E. e KOHAYAKAWA, Yoshiharu. Packing and covering triangles in tripartite graphs. Graphs and Combinatorics, v. 14, n. 1, p. 1-10, 1998Tradução . . Disponível em: https://doi.org/10.1007/s003730050010. Acesso em: 21 jan. 2026.
    • APA

      Haxell, P. E., & Kohayakawa, Y. (1998). Packing and covering triangles in tripartite graphs. Graphs and Combinatorics, 14( 1), 1-10. doi:10.1007/s003730050010
    • NLM

      Haxell PE, Kohayakawa Y. Packing and covering triangles in tripartite graphs [Internet]. Graphs and Combinatorics. 1998 ; 14( 1): 1-10.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s003730050010
    • Vancouver

      Haxell PE, Kohayakawa Y. Packing and covering triangles in tripartite graphs [Internet]. Graphs and Combinatorics. 1998 ; 14( 1): 1-10.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s003730050010

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026