Source: Geometric methods in dynamics (I) - volume in honor of Jacob Palis. Conference titles: International Conference on Dynamical Systems. Unidade: IME
Assunto: SISTEMAS HAMILTONIANOS
ABNT
BERNARD, Patrick e RAGAZZO, Clodoaldo Grotta e SALOMÃO, Pedro Antônio Santoro. Homoclinic orbits near Saddle-Center fixed points of Hamiltonian systems with two degrees of freedom. 2003, Anais.. Paris: Societé Mathématique de France, 2003. Disponível em: https://repositorio.usp.br/directbitstream/fac271f6-7243-4e6a-93c0-e5722fcbf141/1365433.pdf. Acesso em: 15 nov. 2024.APA
Bernard, P., Ragazzo, C. G., & Salomão, P. A. S. (2003). Homoclinic orbits near Saddle-Center fixed points of Hamiltonian systems with two degrees of freedom. In Geometric methods in dynamics (I) - volume in honor of Jacob Palis. Paris: Societé Mathématique de France. Recuperado de https://repositorio.usp.br/directbitstream/fac271f6-7243-4e6a-93c0-e5722fcbf141/1365433.pdfNLM
Bernard P, Ragazzo CG, Salomão PAS. Homoclinic orbits near Saddle-Center fixed points of Hamiltonian systems with two degrees of freedom [Internet]. Geometric methods in dynamics (I) - volume in honor of Jacob Palis. 2003 ;[citado 2024 nov. 15 ] Available from: https://repositorio.usp.br/directbitstream/fac271f6-7243-4e6a-93c0-e5722fcbf141/1365433.pdfVancouver
Bernard P, Ragazzo CG, Salomão PAS. Homoclinic orbits near Saddle-Center fixed points of Hamiltonian systems with two degrees of freedom [Internet]. Geometric methods in dynamics (I) - volume in honor of Jacob Palis. 2003 ;[citado 2024 nov. 15 ] Available from: https://repositorio.usp.br/directbitstream/fac271f6-7243-4e6a-93c0-e5722fcbf141/1365433.pdf