Filtros : "Frontiers in Computational Neuroscience" Removido: "IF" Limpar

Filtros



Limitar por data


  • Fonte: Frontiers in Computational Neuroscience. Unidade: IME

    Assuntos: TEORIA DOS GRAFOS, NEUROCIÊNCIAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OKU, Amanda Yumi Ambriola et al. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms. Frontiers in Computational Neuroscience, v. 16, 2022Tradução . . Disponível em: https://doi.org/10.3389/fncom.2022.975743. Acesso em: 06 nov. 2025.
    • APA

      Oku, A. Y. A., Barreto, C., Bruneri, G., Brockington, G., Fujita, A., & Sato, J. R. (2022). Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms. Frontiers in Computational Neuroscience, 16. doi:10.3389/fncom.2022.975743
    • NLM

      Oku AYA, Barreto C, Bruneri G, Brockington G, Fujita A, Sato JR. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms [Internet]. Frontiers in Computational Neuroscience. 2022 ; 16[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2022.975743
    • Vancouver

      Oku AYA, Barreto C, Bruneri G, Brockington G, Fujita A, Sato JR. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms [Internet]. Frontiers in Computational Neuroscience. 2022 ; 16[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2022.975743
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: REDES COMPLEXAS, REDE NERVOSA, REDES NEURAIS, MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENA, Rodrigo Felipe de Oliveira et al. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks. Frontiers in Computational Neuroscience, v. 12, 2018Tradução . . Disponível em: https://doi.org/10.3389/fncom.2018.00009. Acesso em: 06 nov. 2025.
    • APA

      Pena, R. F. de O., Vellmer, S., Bernardi, D., Roque, A. C., & Lindner, B. (2018). Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks. Frontiers in Computational Neuroscience, 12. doi:10.3389/fncom.2018.00009
    • NLM

      Pena RF de O, Vellmer S, Bernardi D, Roque AC, Lindner B. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks [Internet]. Frontiers in Computational Neuroscience. 2018 ; 12[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2018.00009
    • Vancouver

      Pena RF de O, Vellmer S, Bernardi D, Roque AC, Lindner B. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks [Internet]. Frontiers in Computational Neuroscience. 2018 ; 12[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2018.00009
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: NEUROCIÊNCIAS, CIÊNCIA DA COMPUTAÇÃO, ELETROFISIOLOGIA, REDES NEURAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMOV, Petar et al. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, 2016Tradução . . Disponível em: https://doi.org/10.3389/fncom.2016.00023. Acesso em: 06 nov. 2025.
    • APA

      Tomov, P., Pena, R. F. O., Roque, A. C., & Zaks, M. A. (2016). Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience. doi:10.3389/fncom.2016.00023
    • NLM

      Tomov P, Pena RFO, Roque AC, Zaks MA. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2016 ;[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2016.00023
    • Vancouver

      Tomov P, Pena RFO, Roque AC, Zaks MA. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2016 ;[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2016.00023
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: FÍSICA COMPUTACIONAL (MODELOS), OLFATO, SINAPSE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIMÕES-DE-SOUZA, Fábio M. e ANTUNES, Gabriela e ROQUE, Antônio Carlos. Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Frontiers in Computational Neuroscience, v. 8, 2014Tradução . . Disponível em: https://doi.org/10.3389/fncom.2014.00128. Acesso em: 06 nov. 2025.
    • APA

      Simões-de-Souza, F. M., Antunes, G., & Roque, A. C. (2014). Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Frontiers in Computational Neuroscience, 8. doi:10.3389/fncom.2014.00128
    • NLM

      Simões-de-Souza FM, Antunes G, Roque AC. Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2014.00128
    • Vancouver

      Simões-de-Souza FM, Antunes G, Roque AC. Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2014.00128
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: ELETROFISIOLOGIA, CÓRTEX CEREBRAL, FÍSICA COMPUTACIONAL (MODELOS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMOV, Petar et al. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, v. 8, 2014Tradução . . Disponível em: https://doi.org/10.3389/fncom.2014.00103. Acesso em: 06 nov. 2025.
    • APA

      Tomov, P., Pena, R. F. O., Zaks, M. A., & Roque, A. C. (2014). Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, 8. doi:10.3389/fncom.2014.00103
    • NLM

      Tomov P, Pena RFO, Zaks MA, Roque AC. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2014.00103
    • Vancouver

      Tomov P, Pena RFO, Zaks MA, Roque AC. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2014.00103
  • Fonte: Frontiers in Computational Neuroscience. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, CÓRTEX CEREBRAL, CADEIAS DE MARKOV, SISTEMA DE COMUNICAÇÃO (MODELOS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Luciano da Fontoura e BATISTA, João Luiz B. e ASCOLI, Giorgio A. Communication structure of cortical networks. Frontiers in Computational Neuroscience, v. 5, p. 6-1-6-15, 2011Tradução . . Disponível em: https://doi.org/10.3389/fncom.2011.00006. Acesso em: 06 nov. 2025.
    • APA

      Costa, L. da F., Batista, J. L. B., & Ascoli, G. A. (2011). Communication structure of cortical networks. Frontiers in Computational Neuroscience, 5, 6-1-6-15. doi:10.3389/fncom.2011.00006
    • NLM

      Costa L da F, Batista JLB, Ascoli GA. Communication structure of cortical networks [Internet]. Frontiers in Computational Neuroscience. 2011 ; 5 6-1-6-15.[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2011.00006
    • Vancouver

      Costa L da F, Batista JLB, Ascoli GA. Communication structure of cortical networks [Internet]. Frontiers in Computational Neuroscience. 2011 ; 5 6-1-6-15.[citado 2025 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2011.00006

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025