Filtros : "Differential Geometry and its Applications" Removido: "GEOMETRIA DIFERENCIAL" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 05 dez. 2025.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAJCZER, Marcos e JIMENEZ, Miguel Ibieta. Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, v. 75, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101721. Acesso em: 05 dez. 2025.
    • APA

      Dajczer, M., & Jimenez, M. I. (2021). Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, 75, 1-21. doi:10.1016/j.difgeo.2021.101721
    • NLM

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
    • Vancouver

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
  • Source: Differential Geometry and its Applications. Unidade: IME

    Subjects: FOLHEAÇÕES, TOPOLOGIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e CAVENAGHI, Leonardo Francisco e GONÇALVES, Icaro. On mean curvature flow of singular Riemannian foliations: noncompact cases. Differential Geometry and its Applications, v. 72, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2020.101664. Acesso em: 05 dez. 2025.
    • APA

      Alexandrino, M. M., Cavenaghi, L. F., & Gonçalves, I. (2020). On mean curvature flow of singular Riemannian foliations: noncompact cases. Differential Geometry and its Applications, 72. doi:10.1016/j.difgeo.2020.101664
    • NLM

      Alexandrino MM, Cavenaghi LF, Gonçalves I. On mean curvature flow of singular Riemannian foliations: noncompact cases [Internet]. Differential Geometry and its Applications. 2020 ; 72[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2020.101664
    • Vancouver

      Alexandrino MM, Cavenaghi LF, Gonçalves I. On mean curvature flow of singular Riemannian foliations: noncompact cases [Internet]. Differential Geometry and its Applications. 2020 ; 72[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2020.101664
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTES, Rodrigo Ristow e VERDERESI, José Antonio. Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, v. 25, n. 1, p. 92-100, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2006.05.004. Acesso em: 05 dez. 2025.
    • APA

      Montes, R. R., & Verderesi, J. A. (2007). Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, 25( 1), 92-100. doi:10.1016/j.difgeo.2006.05.004
    • NLM

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
    • Vancouver

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: MÉTRICAS INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e PICCIONE, Paolo. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds. Differential Geometry and its Applications, v. 24, n. 5, p. 521-541, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2006.02.007. Acesso em: 05 dez. 2025.
    • APA

      Javaloyes, M. A., & Piccione, P. (2006). Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds. Differential Geometry and its Applications, 24( 5), 521-541. doi:10.1016/j.difgeo.2006.02.007
    • NLM

      Javaloyes MA, Piccione P. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds [Internet]. Differential Geometry and its Applications. 2006 ; 24( 5): 521-541.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2006.02.007
    • Vancouver

      Javaloyes MA, Piccione P. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds [Internet]. Differential Geometry and its Applications. 2006 ; 24( 5): 521-541.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2006.02.007
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORRELLI, Vincent e GORODSKI, Claudio. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, v. 21, n. 3, p. 337-347, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2004.05.007. Acesso em: 05 dez. 2025.
    • APA

      Borrelli, V., & Gorodski, C. (2004). Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, 21( 3), 337-347. doi:10.1016/j.difgeo.2004.05.007
    • NLM

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
    • Vancouver

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e SOTOMAYOR, Jorge. Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0926-2245(00)00015-2. Acesso em: 05 dez. 2025.
    • APA

      Garcia, R., & Sotomayor, J. (2000). Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.1016/s0926-2245(00)00015-2
    • NLM

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2
    • Vancouver

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025