Filtros : "Communications in Mathematical Physics" Removido: "Inglês" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: DENSIDADE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVIER, A et al. Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, v. 114, n. 3 , p. 439-61, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01242138. Acesso em: 29 jun. 2025.
    • APA

      Bovier, A., Campanino, M., Klein, A., & Perez, J. F. (1988). Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, 114( 3 ), 439-61. doi:10.1007/bf01242138
    • NLM

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01242138
    • Vancouver

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01242138
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Communications in Mathematical Physics, v. 112, p. 409-22, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01218484. Acesso em: 29 jun. 2025.
    • APA

      Schonmann, R. H. (1987). Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Communications in Mathematical Physics, 112, 409-22. doi:10.1007/bf01218484
    • NLM

      Schonmann RH. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region [Internet]. Communications in Mathematical Physics. 1987 ;112 409-22.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01218484
    • Vancouver

      Schonmann RH. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region [Internet]. Communications in Mathematical Physics. 1987 ;112 409-22.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01218484
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, W F e SCHARF, G. On the relation between classical and quantum statistical mechanics. Communications in Mathematical Physics, v. 110, n. 1 , p. 1-31, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01209014. Acesso em: 29 jun. 2025.
    • APA

      Wreszinski, W. F., & Scharf, G. (1987). On the relation between classical and quantum statistical mechanics. Communications in Mathematical Physics, 110( 1 ), 1-31. doi:10.1007/bf01209014
    • NLM

      Wreszinski WF, Scharf G. On the relation between classical and quantum statistical mechanics [Internet]. Communications in Mathematical Physics. 1987 ;110( 1 ): 1-31.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01209014
    • Vancouver

      Wreszinski WF, Scharf G. On the relation between classical and quantum statistical mechanics [Internet]. Communications in Mathematical Physics. 1987 ;110( 1 ): 1-31.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01209014
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÉRMIO

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDALLA, E. e FORGER, Frank Michael. Integrable non linear sigma models with fermions. Communications in Mathematical Physics, v. 104, n. 1 , p. 123-50, 1986Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Abdalla, E., & Forger, F. M. (1986). Integrable non linear sigma models with fermions. Communications in Mathematical Physics, 104( 1 ), 123-50.
    • NLM

      Abdalla E, Forger FM. Integrable non linear sigma models with fermions. Communications in Mathematical Physics. 1986 ;104( 1 ): 123-50.[citado 2025 jun. 29 ]
    • Vancouver

      Abdalla E, Forger FM. Integrable non linear sigma models with fermions. Communications in Mathematical Physics. 1986 ;104( 1 ): 123-50.[citado 2025 jun. 29 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: DIMENSÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEIN, A e MARTINELLI, F e PEREZ, J F. Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, v. 106, n. 4 , p. 623-33, 1986Tradução . . Disponível em: https://doi.org/10.1007/bf01463399. Acesso em: 29 jun. 2025.
    • APA

      Klein, A., Martinelli, F., & Perez, J. F. (1986). Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, 106( 4 ), 623-33. doi:10.1007/bf01463399
    • NLM

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01463399
    • Vancouver

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/bf01463399
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: TEORIA DE GAUGE

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e WRESZINSKI, W F. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics, v. 103, n. 4 , p. 637-68, 1986Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Barata, J. C. A., & Wreszinski, W. F. (1986). Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics, 103( 4 ), 637-68.
    • NLM

      Barata JCA, Wreszinski WF. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics. 1986 ;103( 4 ): 637-68.[citado 2025 jun. 29 ]
    • Vancouver

      Barata JCA, Wreszinski WF. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics. 1986 ;103( 4 ): 637-68.[citado 2025 jun. 29 ]

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025