Filtros : "Communications in Contemporary Mathematics" Removido: "ICMC" Limpar

Filtros



Refine with date range


  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, GEOMETRIA ALGÉBRICA

    Disponível em 2025-05-04Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e KASHUBA, Iryna e MARTIN, María Eugenia. A moment map for the variety of Jordan algebras. Communications in Contemporary Mathematics, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0219199724500159. Acesso em: 05 nov. 2024.
    • APA

      Gorodski, C., Kashuba, I., & Martin, M. E. (2024). A moment map for the variety of Jordan algebras. Communications in Contemporary Mathematics. doi:10.1142/S0219199724500159
    • NLM

      Gorodski C, Kashuba I, Martin ME. A moment map for the variety of Jordan algebras [Internet]. Communications in Contemporary Mathematics. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199724500159
    • Vancouver

      Gorodski C, Kashuba I, Martin ME. A moment map for the variety of Jordan algebras [Internet]. Communications in Contemporary Mathematics. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199724500159
  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GEOMETRIA ALGÉBRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, v. 25, n. 8, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199722500316. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., & Křižka, L. (2023). Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, 25( 8). doi:10.1142/S0219199722500316
    • NLM

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
    • Vancouver

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Danilo Gregorin e SICILIANO, Gaetano. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, v. 25, n. 2, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199721501005. Acesso em: 05 nov. 2024.
    • APA

      Afonso, D. G., & Siciliano, G. (2023). Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, 25( 2). doi:10.1142/S0219199721501005
    • NLM

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199721501005
    • Vancouver

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199721501005

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024