Filtros : "Communications in Algebra" Removido: "IME" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: K-TEORIA, HOMOLOGIA, GRUPOS LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e PÉREZ, Elvis Torres. On the connections between the low dimensional homology groups of 'SL IND.2' and 'PSL IND.2'. Communications in Algebra, 2025Tradução . . Disponível em: https://doi.org/10.1080/00927872.2025.2499703. Acesso em: 01 jul. 2025.
    • APA

      Mirzaii, B., & Pérez, E. T. (2025). On the connections between the low dimensional homology groups of 'SL IND.2' and 'PSL IND.2'. Communications in Algebra. doi:10.1080/00927872.2025.2499703
    • NLM

      Mirzaii B, Pérez ET. On the connections between the low dimensional homology groups of 'SL IND.2' and 'PSL IND.2' [Internet]. Communications in Algebra. 2025 ;[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2025.2499703
    • Vancouver

      Mirzaii B, Pérez ET. On the connections between the low dimensional homology groups of 'SL IND.2' and 'PSL IND.2' [Internet]. Communications in Algebra. 2025 ;[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2025.2499703
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e FERRARI, Marcela Duarte. Coefficient modules and Ratliff-Rush closures. Communications in Algebra, v. 51, n. 8, p. 3497-3509, 2023Tradução . . Disponível em: https://doi.org/10.1080/00927872.2023.2185075. Acesso em: 01 jul. 2025.
    • APA

      Jorge Pérez, V. H., & Ferrari, M. D. (2023). Coefficient modules and Ratliff-Rush closures. Communications in Algebra, 51( 8), 3497-3509. doi:10.1080/00927872.2023.2185075
    • NLM

      Jorge Pérez VH, Ferrari MD. Coefficient modules and Ratliff-Rush closures [Internet]. Communications in Algebra. 2023 ; 51( 8): 3497-3509.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2023.2185075
    • Vancouver

      Jorge Pérez VH, Ferrari MD. Coefficient modules and Ratliff-Rush closures [Internet]. Communications in Algebra. 2023 ; 51( 8): 3497-3509.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2023.2185075
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo. Lower bounds for Betti numbers over fiber product rings. Communications in Algebra, v. 51, n. 12, p. 5263-5276, 2023Tradução . . Disponível em: https://doi.org/10.1080/00927872.2023.2228418. Acesso em: 01 jul. 2025.
    • APA

      Freitas, T. H. de, & Jorge Pérez, V. H. (2023). Lower bounds for Betti numbers over fiber product rings. Communications in Algebra, 51( 12), 5263-5276. doi:10.1080/00927872.2023.2228418
    • NLM

      Freitas TH de, Jorge Pérez VH. Lower bounds for Betti numbers over fiber product rings [Internet]. Communications in Algebra. 2023 ; 51( 12): 5263-5276.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2023.2228418
    • Vancouver

      Freitas TH de, Jorge Pérez VH. Lower bounds for Betti numbers over fiber product rings [Internet]. Communications in Algebra. 2023 ; 51( 12): 5263-5276.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2023.2228418
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 01 jul. 2025.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, TEORIA DA DIMENSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e MIRANDA-NETO, Cleto Brasileiro. Criteria for prescribed bound on projective dimension. Communications in Algebra, v. 49, p. 2505-2515, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1874004. Acesso em: 01 jul. 2025.
    • APA

      Jorge Pérez, V. H., & Miranda-Neto, C. B. (2021). Criteria for prescribed bound on projective dimension. Communications in Algebra, 49, 2505-2515. doi:10.1080/00927872.2021.1874004
    • NLM

      Jorge Pérez VH, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1874004
    • Vancouver

      Jorge Pérez VH, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1874004
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTANUCCI, Maria e SPEZIALI, Pietro. Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, v. 48, n. 9, p. 3690-3706, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1743714. Acesso em: 01 jul. 2025.
    • APA

      Montanucci, M., & Speziali, P. (2020). Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, 48( 9), 3690-3706. doi:10.1080/00927872.2020.1743714
    • NLM

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
    • Vancouver

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÊMINA, L. L et al. Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, v. 44, n. 2, p. 768-786, 2016Tradução . . Disponível em: https://doi.org/10.1080/00927872.2014.990022. Acesso em: 01 jul. 2025.
    • APA

      Fêmina, L. L., Galves, A. P. T., Manzoli Neto, O., & Spreafico, M. (2016). Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, 44( 2), 768-786. doi:10.1080/00927872.2014.990022
    • NLM

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2014.990022
    • Vancouver

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927872.2014.990022
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTONCELLO, Luciene Nogueira e LEVCOVITZ, Daniel. Cyclic maximal ideals of rings of differential operators over power series rings. Communications in Algebra, v. 38, n. 5, p. 1621-1632, 2010Tradução . . Disponível em: https://doi.org/10.1080/00927870902960372. Acesso em: 01 jul. 2025.
    • APA

      Bertoncello, L. N., & Levcovitz, D. (2010). Cyclic maximal ideals of rings of differential operators over power series rings. Communications in Algebra, 38( 5), 1621-1632. doi:10.1080/00927870902960372
    • NLM

      Bertoncello LN, Levcovitz D. Cyclic maximal ideals of rings of differential operators over power series rings [Internet]. Communications in Algebra. 2010 ; 38( 5): 1621-1632.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927870902960372
    • Vancouver

      Bertoncello LN, Levcovitz D. Cyclic maximal ideals of rings of differential operators over power series rings [Internet]. Communications in Algebra. 2010 ; 38( 5): 1621-1632.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927870902960372
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Ires e MICALI, Artibano e PAQUES, Antonio. On transversality for quadratic spaces over rings with many units. Communications in Algebra, v. 32, n. 2, p. 551-559, 2004Tradução . . Disponível em: https://doi.org/10.1081/AGB-120027911. Acesso em: 01 jul. 2025.
    • APA

      Dias, I., Micali, A., & Paques, A. (2004). On transversality for quadratic spaces over rings with many units. Communications in Algebra, 32( 2), 551-559. doi:10.1081/AGB-120027911
    • NLM

      Dias I, Micali A, Paques A. On transversality for quadratic spaces over rings with many units [Internet]. Communications in Algebra. 2004 ; 32( 2): 551-559.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1081/AGB-120027911
    • Vancouver

      Dias I, Micali A, Paques A. On transversality for quadratic spaces over rings with many units [Internet]. Communications in Algebra. 2004 ; 32( 2): 551-559.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1081/AGB-120027911
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Ires. Unitary group over strongly semilocal rings. Communications in Algebra, v. 23, n. 5 , p. 1797-814, 1995Tradução . . Disponível em: https://doi.org/10.1080/00927879508825310. Acesso em: 01 jul. 2025.
    • APA

      Dias, I. (1995). Unitary group over strongly semilocal rings. Communications in Algebra, 23( 5 ), 1797-814. doi:10.1080/00927879508825310
    • NLM

      Dias I. Unitary group over strongly semilocal rings [Internet]. Communications in Algebra. 1995 ;23( 5 ): 1797-814.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927879508825310
    • Vancouver

      Dias I. Unitary group over strongly semilocal rings [Internet]. Communications in Algebra. 1995 ;23( 5 ): 1797-814.[citado 2025 jul. 01 ] Available from: https://doi.org/10.1080/00927879508825310
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ÁLGEBRA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Ires. On the orthogonal group over an lg-ring. Communications in Algebra, v. 19, n. 2 , p. 443-54, 1991Tradução . . Acesso em: 01 jul. 2025.
    • APA

      Dias, I. (1991). On the orthogonal group over an lg-ring. Communications in Algebra, 19( 2 ), 443-54.
    • NLM

      Dias I. On the orthogonal group over an lg-ring. Communications in Algebra. 1991 ;19( 2 ): 443-54.[citado 2025 jul. 01 ]
    • Vancouver

      Dias I. On the orthogonal group over an lg-ring. Communications in Algebra. 1991 ;19( 2 ): 443-54.[citado 2025 jul. 01 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025