Filtros : "Chemical Engineering Science" Removido: "INDÚSTRIA QUÍMICA" Limpar

Filtros



Limitar por data


  • Fonte: Chemical Engineering Science. Unidade: IQSC

    Assuntos: ESTRUTURA QUÍMICA, ÁCIDO LÁCTICO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SUQUISAQUI, Ana Beatriz Valim et al. Control of PLA chemical structures by using GMA and DCP during reactive processing and its influence on PLA foamability. Chemical Engineering Science, v. 310, p. 121544, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2025.121544. Acesso em: 17 jun. 2025.
    • APA

      Suquisaqui, A. B. V., Gonçalves, L. M. G., Possari, L. T., Silva, E. A. da, Lima Neto, B. dos S., Bretas, R. E. S., et al. (2025). Control of PLA chemical structures by using GMA and DCP during reactive processing and its influence on PLA foamability. Chemical Engineering Science, 310, 121544. doi:10.1016/j.ces.2025.121544
    • NLM

      Suquisaqui ABV, Gonçalves LMG, Possari LT, Silva EA da, Lima Neto B dos S, Bretas RES, Rosa P de TV e, Bettini SHP. Control of PLA chemical structures by using GMA and DCP during reactive processing and its influence on PLA foamability [Internet]. Chemical Engineering Science. 2025 ;310 121544.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2025.121544
    • Vancouver

      Suquisaqui ABV, Gonçalves LMG, Possari LT, Silva EA da, Lima Neto B dos S, Bretas RES, Rosa P de TV e, Bettini SHP. Control of PLA chemical structures by using GMA and DCP during reactive processing and its influence on PLA foamability [Internet]. Chemical Engineering Science. 2025 ;310 121544.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2025.121544
  • Fonte: Chemical Engineering Science. Unidade: IQSC

    Assuntos: HIDROCARBONETOS, HIDROGENAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LINO, Ananda Vallezi Paladino et al. Impact of the K and Fe insertion methods in KFeCeZr catalysts on the CO2 hydrogenation to C2/C3 olefins at room pressure. Chemical Engineering Science, v. 302, p. 120898, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2024.120898. Acesso em: 17 jun. 2025.
    • APA

      Lino, A. V. P., Vieira, L. H., Assaf, E. M., & Assaf, J. M. (2025). Impact of the K and Fe insertion methods in KFeCeZr catalysts on the CO2 hydrogenation to C2/C3 olefins at room pressure. Chemical Engineering Science, 302, 120898. doi:10.1016/j.ces.2024.120898
    • NLM

      Lino AVP, Vieira LH, Assaf EM, Assaf JM. Impact of the K and Fe insertion methods in KFeCeZr catalysts on the CO2 hydrogenation to C2/C3 olefins at room pressure [Internet]. Chemical Engineering Science. 2025 ;302 120898.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2024.120898
    • Vancouver

      Lino AVP, Vieira LH, Assaf EM, Assaf JM. Impact of the K and Fe insertion methods in KFeCeZr catalysts on the CO2 hydrogenation to C2/C3 olefins at room pressure [Internet]. Chemical Engineering Science. 2025 ;302 120898.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2024.120898
  • Fonte: Chemical Engineering Science. Unidade: EESC

    Assuntos: DINÂMICA DOS FLUÍDOS, ESCOAMENTO BIFÁSICO, ENGENHARIA MECÂNICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KURIMOTO, Ryo et al. Shapes and terminal velocities of single bubbles rising through fiber bundle in stagnant water. Chemical Engineering Science, v. 299, p. 1-11, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.ces.2024.120557. Acesso em: 17 jun. 2025.
    • APA

      Kurimoto, R., Neumeister, R. F., Komine, R., Ribatski, G., & Hayashi, K. (2024). Shapes and terminal velocities of single bubbles rising through fiber bundle in stagnant water. Chemical Engineering Science, 299, 1-11. doi:10.1016/j.ces.2024.120557
    • NLM

      Kurimoto R, Neumeister RF, Komine R, Ribatski G, Hayashi K. Shapes and terminal velocities of single bubbles rising through fiber bundle in stagnant water [Internet]. Chemical Engineering Science. 2024 ; 299 1-11.[citado 2025 jun. 17 ] Available from: http://dx.doi.org/10.1016/j.ces.2024.120557
    • Vancouver

      Kurimoto R, Neumeister RF, Komine R, Ribatski G, Hayashi K. Shapes and terminal velocities of single bubbles rising through fiber bundle in stagnant water [Internet]. Chemical Engineering Science. 2024 ; 299 1-11.[citado 2025 jun. 17 ] Available from: http://dx.doi.org/10.1016/j.ces.2024.120557
  • Fonte: Chemical Engineering Science. Unidade: EACH

    Assunto: BACALHAU

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARQUES , Diego Gouveia et al. Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation. Chemical Engineering Science, p. 01-30, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.ces.2024.121094. Acesso em: 17 jun. 2025.
    • APA

      Marques , D. G., Domingos, J. de M. F., Nolasco, M. A., & Campos, V. (2024). Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation. Chemical Engineering Science, 01-30. doi:10.1016/j.ces.2024.121094
    • NLM

      Marques DG, Domingos J de MF, Nolasco MA, Campos V. Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation [Internet]. Chemical Engineering Science. 2024 ; 01-30.[citado 2025 jun. 17 ] Available from: http://dx.doi.org/10.1016/j.ces.2024.121094
    • Vancouver

      Marques DG, Domingos J de MF, Nolasco MA, Campos V. Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation [Internet]. Chemical Engineering Science. 2024 ; 01-30.[citado 2025 jun. 17 ] Available from: http://dx.doi.org/10.1016/j.ces.2024.121094
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: POLIMERIZAÇÃO, MODELOS MATEMÁTICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Rodrigo Vallejo e GIUDICI, Reinaldo. Mathematical modeling of emulsion copolymerization regarding particle size distribution and average molecular weights. Chemical Engineering Science, v. 265, n. Ja 2023, p. 1-16, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2022.118234. Acesso em: 17 jun. 2025.
    • APA

      Pereira, R. V., & Giudici, R. (2023). Mathematical modeling of emulsion copolymerization regarding particle size distribution and average molecular weights. Chemical Engineering Science, 265( Ja 2023), 1-16. doi:10.1016/j.ces.2022.118234
    • NLM

      Pereira RV, Giudici R. Mathematical modeling of emulsion copolymerization regarding particle size distribution and average molecular weights [Internet]. Chemical Engineering Science. 2023 ; 265( Ja 2023): 1-16.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2022.118234
    • Vancouver

      Pereira RV, Giudici R. Mathematical modeling of emulsion copolymerization regarding particle size distribution and average molecular weights [Internet]. Chemical Engineering Science. 2023 ; 265( Ja 2023): 1-16.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2022.118234
  • Fonte: Chemical Engineering Science. Unidade: IQSC

    Assuntos: PERÓXIDO DE HIDROGÊNIO, ANIMAIS PREDADORES, DIAMANTE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDEIRO JUNIOR, Paulo Jorge Marques e LANZA, Marcos Roberto de Vasconcelos e RODRIGO, Manuel Andrés Rodrigo. Modeling the electrosynthesis of H2O2: Understanding the role of predatory species. Chemical Engineering Science, v. 273, p. 118647, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2023.118647. Acesso em: 17 jun. 2025.
    • APA

      Cordeiro Junior, P. J. M., Lanza, M. R. de V., & Rodrigo, M. A. R. (2023). Modeling the electrosynthesis of H2O2: Understanding the role of predatory species. Chemical Engineering Science, 273, 118647. doi:10.1016/j.ces.2023.118647
    • NLM

      Cordeiro Junior PJM, Lanza MR de V, Rodrigo MAR. Modeling the electrosynthesis of H2O2: Understanding the role of predatory species [Internet]. Chemical Engineering Science. 2023 ;273 118647.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2023.118647
    • Vancouver

      Cordeiro Junior PJM, Lanza MR de V, Rodrigo MAR. Modeling the electrosynthesis of H2O2: Understanding the role of predatory species [Internet]. Chemical Engineering Science. 2023 ;273 118647.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2023.118647
  • Fonte: Chemical Engineering Science. Unidade: EESC

    Assuntos: ENGENHARIA MECÂNICA, PARTÍCULAS (FÍSICA NUCLEAR), FLUIDIZAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MILIOLI, Christian Léa Coelho da Costa e MILIOLI, Fernando Eduardo. A scale sensitive filtered sub-grid drag model for fluidized gas-particle flows. Chemical Engineering Science, v. 267, p. 1-13, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2022.118266. Acesso em: 17 jun. 2025.
    • APA

      Milioli, C. L. C. da C., & Milioli, F. E. (2023). A scale sensitive filtered sub-grid drag model for fluidized gas-particle flows. Chemical Engineering Science, 267, 1-13. doi:10.1016/j.ces.2022.118266
    • NLM

      Milioli CLC da C, Milioli FE. A scale sensitive filtered sub-grid drag model for fluidized gas-particle flows [Internet]. Chemical Engineering Science. 2023 ; 267 1-13.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2022.118266
    • Vancouver

      Milioli CLC da C, Milioli FE. A scale sensitive filtered sub-grid drag model for fluidized gas-particle flows [Internet]. Chemical Engineering Science. 2023 ; 267 1-13.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2022.118266
  • Fonte: Chemical Engineering Science. Unidades: EESC, ICMC

    Assuntos: FLUIDIZAÇÃO, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NIAKI, Seyed Reza Amini et al. Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows. Chemical Engineering Science, v. 229, n. Ja 2021, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2020.116021. Acesso em: 17 jun. 2025.
    • APA

      Niaki, S. R. A., Mouallem, J., Chavez Cussy, N., Milioli, C. C., & Milioli, F. E. (2021). Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows. Chemical Engineering Science, 229( Ja 2021), 1-12. doi:10.1016/j.ces.2020.116021
    • NLM

      Niaki SRA, Mouallem J, Chavez Cussy N, Milioli CC, Milioli FE. Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows [Internet]. Chemical Engineering Science. 2021 ; 229( Ja 2021): 1-12.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2020.116021
    • Vancouver

      Niaki SRA, Mouallem J, Chavez Cussy N, Milioli CC, Milioli FE. Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows [Internet]. Chemical Engineering Science. 2021 ; 229( Ja 2021): 1-12.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2020.116021
  • Fonte: Chemical Engineering Science. Unidade: EESC

    Assuntos: ÁGUA POTÁVEL, FILTROS DE AREIA, DINÂMICA DOS FLUÍDOS COMPUTACIONAL, ENGENHARIA HIDRÁULICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRIETO HOJO, Liri Yoko Cruz et al. Household slow sand filters operating in continuous and intermittent flows: computational fluid dynamics simulation and validation by tracer experiments. Chemical Engineering Science, v. 247, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2021.117058. Acesso em: 17 jun. 2025.
    • APA

      Prieto Hojo, L. Y. C., Rezende, R. V. de P., Lautenschlager, S. R., & Sabogal-Paz, L. P. (2021). Household slow sand filters operating in continuous and intermittent flows: computational fluid dynamics simulation and validation by tracer experiments. Chemical Engineering Science, 247, 1-11. doi:10.1016/j.ces.2021.117058
    • NLM

      Prieto Hojo LYC, Rezende RV de P, Lautenschlager SR, Sabogal-Paz LP. Household slow sand filters operating in continuous and intermittent flows: computational fluid dynamics simulation and validation by tracer experiments [Internet]. Chemical Engineering Science. 2021 ; 247 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2021.117058
    • Vancouver

      Prieto Hojo LYC, Rezende RV de P, Lautenschlager SR, Sabogal-Paz LP. Household slow sand filters operating in continuous and intermittent flows: computational fluid dynamics simulation and validation by tracer experiments [Internet]. Chemical Engineering Science. 2021 ; 247 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2021.117058
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: TERMODINÂMICA, DIÓXIDO DE CARBONO, HIDROGENAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLO, Taofeeq Oladayo et al. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chemical Engineering Science, v. 242, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2021.116731. Acesso em: 17 jun. 2025.
    • APA

      Bello, T. O., Bresciani, A. E., Nascimento, C. A. O. do, & Alves, R. M. de B. (2021). Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chemical Engineering Science, 242. doi:10.1016/j.ces.2021.116731
    • NLM

      Bello TO, Bresciani AE, Nascimento CAO do, Alves RM de B. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol [Internet]. Chemical Engineering Science. 2021 ;242[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2021.116731
    • Vancouver

      Bello TO, Bresciani AE, Nascimento CAO do, Alves RM de B. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol [Internet]. Chemical Engineering Science. 2021 ;242[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2021.116731
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: LÍQUIDOS IÔNICOS, METANO, INIBIDORES QUÍMICOS, CALORÍMETROS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEZES, Davi Eber Sanchez de e PESSÔA FILHO, Pedro de Alcântara e ROBUSTILLO FUENTES, Maria Dolores. Use of 1-butyl-3-methylimidazolium-based ionic liquids as methane hydrate inhibitors at high pressure conditions. Chemical Engineering Science, v. 212, p. 1-11, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2019.115323. Acesso em: 17 jun. 2025.
    • APA

      Menezes, D. E. S. de, Pessôa Filho, P. de A., & Robustillo Fuentes, M. D. (2020). Use of 1-butyl-3-methylimidazolium-based ionic liquids as methane hydrate inhibitors at high pressure conditions. Chemical Engineering Science, 212, 1-11. doi:10.1016/j.ces.2019.115323
    • NLM

      Menezes DES de, Pessôa Filho P de A, Robustillo Fuentes MD. Use of 1-butyl-3-methylimidazolium-based ionic liquids as methane hydrate inhibitors at high pressure conditions [Internet]. Chemical Engineering Science. 2020 ; 212 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.115323
    • Vancouver

      Menezes DES de, Pessôa Filho P de A, Robustillo Fuentes MD. Use of 1-butyl-3-methylimidazolium-based ionic liquids as methane hydrate inhibitors at high pressure conditions [Internet]. Chemical Engineering Science. 2020 ; 212 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.115323
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: MODELOS MATEMÁTICOS, MONITORAMENTO, CINÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TORRAGA, Maria Giuliana Fontanelli e ESPINOLA COLMÁN, María Magdalena e GIUDICI, Reinaldo. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy. Chemical Engineering Science, v. 210, p. 1-9, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2019.115244. Acesso em: 17 jun. 2025.
    • APA

      Torraga, M. G. F., Espinola Colmán, M. M., & Giudici, R. (2019). Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy. Chemical Engineering Science, 210, 1-9. doi:10.1016/j.ces.2019.115244
    • NLM

      Torraga MGF, Espinola Colmán MM, Giudici R. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy [Internet]. Chemical Engineering Science. 2019 ; 210 1-9.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.115244
    • Vancouver

      Torraga MGF, Espinola Colmán MM, Giudici R. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy [Internet]. Chemical Engineering Science. 2019 ; 210 1-9.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.115244
  • Fonte: Chemical Engineering Science. Unidades: EESC, ICMC

    Assuntos: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANSONI, Jonas Laerte e SANTIAGO, Patricia A. e SELEGHIM JUNIOR, Paulo. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics. Chemical Engineering Science, v. 195, p. 946-957, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.10.041. Acesso em: 17 jun. 2025.
    • APA

      Ansoni, J. L., Santiago, P. A., & Seleghim Junior, P. (2019). Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics. Chemical Engineering Science, 195, 946-957. doi:10.1016/j.ces.2018.10.041
    • NLM

      Ansoni JL, Santiago PA, Seleghim Junior P. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics [Internet]. Chemical Engineering Science. 2019 ; 195 946-957.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.10.041
    • Vancouver

      Ansoni JL, Santiago PA, Seleghim Junior P. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics [Internet]. Chemical Engineering Science. 2019 ; 195 946-957.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.10.041
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: EQUILÍBRIO QUÍMICO, METANO, CALORÍMETROS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEZES, Davi Eber Sanchez de et al. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures. Chemical Engineering Science, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2019.08.007. Acesso em: 17 jun. 2025.
    • APA

      Menezes, D. E. S. de, Sum, A. K., Desmedt, A., Pessôa Filho, P. de A., & Robustillo Fuentes, M. D. (2019). Coexistence of sI and sII in methane-propane hydrate former systems at high pressures. Chemical Engineering Science, No 2019, 1-11. doi:10.1016/j.ces.2019.08.007
    • NLM

      Menezes DES de, Sum AK, Desmedt A, Pessôa Filho P de A, Robustillo Fuentes MD. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures [Internet]. Chemical Engineering Science. 2019 ; No 2019 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.08.007
    • Vancouver

      Menezes DES de, Sum AK, Desmedt A, Pessôa Filho P de A, Robustillo Fuentes MD. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures [Internet]. Chemical Engineering Science. 2019 ; No 2019 1-11.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2019.08.007
  • Fonte: Chemical Engineering Science. Unidades: EESC, ICMC

    Assuntos: FLUIDIZAÇÃO, TENSÃO RESIDUAL, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOUALLEM, Joseph et al. Macro-scale effects over filtered and residual stresses in gas-solid riser flows. Chemical Engineering Science, v. 195, p. 553-564, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.09.054. Acesso em: 17 jun. 2025.
    • APA

      Mouallem, J., Chavez Cussy, N., Niaki, S. R. A., Milioli, C. L. C. da C., & Milioli, F. E. (2019). Macro-scale effects over filtered and residual stresses in gas-solid riser flows. Chemical Engineering Science, 195, 553-564. doi:10.1016/j.ces.2018.09.054
    • NLM

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. Macro-scale effects over filtered and residual stresses in gas-solid riser flows [Internet]. Chemical Engineering Science. 2019 ; 195 553-564.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.09.054
    • Vancouver

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. Macro-scale effects over filtered and residual stresses in gas-solid riser flows [Internet]. Chemical Engineering Science. 2019 ; 195 553-564.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.09.054
  • Fonte: Chemical Engineering Science. Unidade: EESC

    Assuntos: FLUIDIZAÇÃO, ESCOAMENTO, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOUALLEM, Joseph et al. On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows. Chemical Engineering Science, v. 182, p. 200-211, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.02.039. Acesso em: 17 jun. 2025.
    • APA

      Mouallem, J., Chavez Cussy, N., Niaki, S. R. A., Milioli, C. L. C. da C., & Milioli, F. E. (2018). On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows. Chemical Engineering Science, 182, 200-211. doi:10.1016/j.ces.2018.02.039
    • NLM

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows [Internet]. Chemical Engineering Science. 2018 ; 182 200-211.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.02.039
    • Vancouver

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows [Internet]. Chemical Engineering Science. 2018 ; 182 200-211.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.02.039
  • Fonte: Chemical Engineering Science. Unidade: EESC

    Assuntos: ESCOAMENTO MULTIFÁSICO, PETRÓLEO, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLMANETTI, Alex Roger Almeida et al. Phase inversion phenomena in vertical three-phase flow: experimental study on the influence of fluids viscosity, duct geometry and gas flow rate. Chemical Engineering Science, v. 189, p. 245-289, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.05.050. Acesso em: 17 jun. 2025.
    • APA

      Colmanetti, A. R. A., Castro, M. S. de, Barbosa, M. C., & Hernandez Rodriguez, O. M. (2018). Phase inversion phenomena in vertical three-phase flow: experimental study on the influence of fluids viscosity, duct geometry and gas flow rate. Chemical Engineering Science, 189, 245-289. doi:10.1016/j.ces.2018.05.050
    • NLM

      Colmanetti ARA, Castro MS de, Barbosa MC, Hernandez Rodriguez OM. Phase inversion phenomena in vertical three-phase flow: experimental study on the influence of fluids viscosity, duct geometry and gas flow rate [Internet]. Chemical Engineering Science. 2018 ; 189 245-289.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.05.050
    • Vancouver

      Colmanetti ARA, Castro MS de, Barbosa MC, Hernandez Rodriguez OM. Phase inversion phenomena in vertical three-phase flow: experimental study on the influence of fluids viscosity, duct geometry and gas flow rate [Internet]. Chemical Engineering Science. 2018 ; 189 245-289.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2018.05.050
  • Fonte: Chemical Engineering Science. Unidades: EEL, EP

    Assuntos: MODELAGEM DE EQUAÇÕES ESTRUTURAIS, SIMULAÇÃO, DINÂMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMA, Caroline Satye Martins e SIQUEIRA, A. F e VIANNA JUNIOR, Ardson dos Santos. Stochastic axial dispersion model for tubular equipment. Chemical Engineering Science, v. 171, p. 131-138, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2017.05.024. Acesso em: 17 jun. 2025.
    • APA

      Nakama, C. S. M., Siqueira, A. F., & Vianna Junior, A. dos S. (2017). Stochastic axial dispersion model for tubular equipment. Chemical Engineering Science, 171, 131-138. doi:10.1016/j.ces.2017.05.024
    • NLM

      Nakama CSM, Siqueira AF, Vianna Junior A dos S. Stochastic axial dispersion model for tubular equipment [Internet]. Chemical Engineering Science. 2017 ; 171 131-138.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2017.05.024
    • Vancouver

      Nakama CSM, Siqueira AF, Vianna Junior A dos S. Stochastic axial dispersion model for tubular equipment [Internet]. Chemical Engineering Science. 2017 ; 171 131-138.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2017.05.024
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: MODELAGEM MOLECULAR, ÁCIDOS GRAXOS, SOLVENTE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERBAUD, Vicent et al. Computer aided framework for designing bio-based commodity molecules with enhanced properties. Chemical Engineering Science, v. 159, p. 177-193, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2016.04.044. Acesso em: 17 jun. 2025.
    • APA

      Gerbaud, V., Santos, M. T. dos, Pandya, N., & Aubry, J. M. (2017). Computer aided framework for designing bio-based commodity molecules with enhanced properties. Chemical Engineering Science, 159, 177-193. doi:10.1016/j.ces.2016.04.044
    • NLM

      Gerbaud V, Santos MT dos, Pandya N, Aubry JM. Computer aided framework for designing bio-based commodity molecules with enhanced properties [Internet]. Chemical Engineering Science. 2017 ; 159 177-193.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2016.04.044
    • Vancouver

      Gerbaud V, Santos MT dos, Pandya N, Aubry JM. Computer aided framework for designing bio-based commodity molecules with enhanced properties [Internet]. Chemical Engineering Science. 2017 ; 159 177-193.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2016.04.044
  • Fonte: Chemical Engineering Science. Unidade: EP

    Assuntos: TERMOGRAVIMETRIA, MICROALGAS, BIOMASSA, CHLORELLA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIUDICI, Reinaldo et al. Reply to the comments on the paper titled “Hydrolysis of acetic anhydride: non-adiabatic calorimetric determination of kinetics and heat exchange” [Wilson H. Hirota, Rodolfo B. Rodrigues, Claudia Sayer, Reinaldo Giudici, Chemical Engineering Science 65 (2010) 3849–3858]. Chemical Engineering Science. London: Escola Politécnica, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.ces.2016.01.012. Acesso em: 17 jun. 2025. , 2016
    • APA

      Giudici, R., Sayer, C., Hirota, W. H., & Rodrigues, R. B. (2016). Reply to the comments on the paper titled “Hydrolysis of acetic anhydride: non-adiabatic calorimetric determination of kinetics and heat exchange” [Wilson H. Hirota, Rodolfo B. Rodrigues, Claudia Sayer, Reinaldo Giudici, Chemical Engineering Science 65 (2010) 3849–3858]. Chemical Engineering Science. London: Escola Politécnica, Universidade de São Paulo. doi:10.1016/j.ces.2016.01.012
    • NLM

      Giudici R, Sayer C, Hirota WH, Rodrigues RB. Reply to the comments on the paper titled “Hydrolysis of acetic anhydride: non-adiabatic calorimetric determination of kinetics and heat exchange” [Wilson H. Hirota, Rodolfo B. Rodrigues, Claudia Sayer, Reinaldo Giudici, Chemical Engineering Science 65 (2010) 3849–3858] [Internet]. Chemical Engineering Science. 2016 ; 144 446-448.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2016.01.012
    • Vancouver

      Giudici R, Sayer C, Hirota WH, Rodrigues RB. Reply to the comments on the paper titled “Hydrolysis of acetic anhydride: non-adiabatic calorimetric determination of kinetics and heat exchange” [Wilson H. Hirota, Rodolfo B. Rodrigues, Claudia Sayer, Reinaldo Giudici, Chemical Engineering Science 65 (2010) 3849–3858] [Internet]. Chemical Engineering Science. 2016 ; 144 446-448.[citado 2025 jun. 17 ] Available from: https://doi.org/10.1016/j.ces.2016.01.012

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025