Filtros : "Applied Mathematics and Optimization" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, v. 90, p. 1-47, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00245-024-10170-1. Acesso em: 04 nov. 2024.
    • APA

      Bonotto, E. de M., Carvalho, A. N. de, Nascimento, M. J. D., & Santiago, E. B. (2024). Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, 90, 1-47. doi:10.1007/s00245-024-10170-1
    • NLM

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
    • Vancouver

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
  • Source: Applied Mathematics and Optimization. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e GAMBERA, Laura R. e SANTOS, José Paulo Carvalho dos. Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay. Applied Mathematics and Optimization, v. 87, n. 3, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00245-022-09955-z. Acesso em: 04 nov. 2024.
    • APA

      Hernandez, E., Gambera, L. R., & Santos, J. P. C. dos. (2023). Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay. Applied Mathematics and Optimization, 87( 3). doi:10.1007/s00245-022-09955-z
    • NLM

      Hernandez E, Gambera LR, Santos JPC dos. Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay [Internet]. Applied Mathematics and Optimization. 2023 ; 87( 3):[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-022-09955-z
    • Vancouver

      Hernandez E, Gambera LR, Santos JPC dos. Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay [Internet]. Applied Mathematics and Optimization. 2023 ; 87( 3):[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-022-09955-z
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Xin-Guang et al. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, v. 83, n. 3, p. 2129-2183, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00245-019-09622-w. Acesso em: 04 nov. 2024.
    • APA

      Yang, X. -G., Qin, Y., Lu, Y., & Ma, T. F. (2021). Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, 83( 3), 2129-2183. doi:10.1007/s00245-019-09622-w
    • NLM

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-019-09622-w
    • Vancouver

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-019-09622-w
  • Source: Applied Mathematics and Optimization. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNÁNDEZ, Eduardo e WU, Jianhong e FERNANDES, Denis. Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay. Applied Mathematics and Optimization, v. 81, n. 1, p. 89-111, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00245-018-9477-x. Acesso em: 04 nov. 2024.
    • APA

      Hernández, E., Wu, J., & Fernandes, D. (2020). Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay. Applied Mathematics and Optimization, 81( 1), 89-111. doi:10.1007/s00245-018-9477-x
    • NLM

      Hernández E, Wu J, Fernandes D. Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay [Internet]. Applied Mathematics and Optimization. 2020 ; 81( 1): 89-111.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-018-9477-x
    • Vancouver

      Hernández E, Wu J, Fernandes D. Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay [Internet]. Applied Mathematics and Optimization. 2020 ; 81( 1): 89-111.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-018-9477-x
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MONTEIRO, Rodrigo Nunes e PEREIRA, Ana Cláudia. Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, v. 80, n. 2, p. 391-413, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00245-017-9469-2. Acesso em: 04 nov. 2024.
    • APA

      Ma, T. F., Monteiro, R. N., & Pereira, A. C. (2019). Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, 80( 2), 391-413. doi:10.1007/s00245-017-9469-2
    • NLM

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
    • Vancouver

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
  • Source: Applied Mathematics and Optimization. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNÁNDEZ, Eduardo e O'REGAN, Donal. On implicit abstract neutral nonlinear differential equations. Applied Mathematics and Optimization, v. 73, p. 329-347, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00245-015-9305-5. Acesso em: 04 nov. 2024.
    • APA

      Hernández, E., & O'Regan, D. (2016). On implicit abstract neutral nonlinear differential equations. Applied Mathematics and Optimization, 73, 329-347. doi:10.1007/s00245-015-9305-5
    • NLM

      Hernández E, O'Regan D. On implicit abstract neutral nonlinear differential equations [Internet]. Applied Mathematics and Optimization. 2016 ; 73 329-347.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-015-9305-5
    • Vancouver

      Hernández E, O'Regan D. On implicit abstract neutral nonlinear differential equations [Internet]. Applied Mathematics and Optimization. 2016 ; 73 329-347.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-015-9305-5
  • Source: Applied Mathematics and Optimization. Unidade: EP

    Assunto: CADEIAS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Oswaldo Luiz do Valle e DUFOUR, F. The Policy Iteration Algorithm for Average Continuous Control of Piecewise Deterministic Markov Processes. Applied Mathematics and Optimization, p. 1-19, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00245-010-9099-4. Acesso em: 04 nov. 2024.
    • APA

      Costa, O. L. do V., & Dufour, F. (2010). The Policy Iteration Algorithm for Average Continuous Control of Piecewise Deterministic Markov Processes. Applied Mathematics and Optimization, 1-19. doi:10.1007/s00245-010-9099-4
    • NLM

      Costa OL do V, Dufour F. The Policy Iteration Algorithm for Average Continuous Control of Piecewise Deterministic Markov Processes [Internet]. Applied Mathematics and Optimization. 2010 ; 1-19.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-010-9099-4
    • Vancouver

      Costa OL do V, Dufour F. The Policy Iteration Algorithm for Average Continuous Control of Piecewise Deterministic Markov Processes [Internet]. Applied Mathematics and Optimization. 2010 ; 1-19.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-010-9099-4
  • Source: Applied Mathematics and Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, Jesus Manuel. A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, v. 43, n. 2, p. 117-128, 2001Tradução . . Disponível em: https://doi.org/10.1007/s00245-001-0003-0. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2001). A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, 43( 2), 117-128. doi:10.1007/s00245-001-0003-0
    • NLM

      Birgin EJG, Martinez JM. A spectral conjugate gradient method for unconstrained optimization [Internet]. Applied Mathematics and Optimization. 2001 ; 43( 2): 117-128.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-001-0003-0
    • Vancouver

      Birgin EJG, Martinez JM. A spectral conjugate gradient method for unconstrained optimization [Internet]. Applied Mathematics and Optimization. 2001 ; 43( 2): 117-128.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s00245-001-0003-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024