Source: Ieee access. Unidade: FM
Subjects: ELETROCARDIOGRAFIA, HOSPITAIS, FIBRILAÇÃO ATRIAL, INTELIGÊNCIA ARTIFICIAL
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DIAS, Felipe Meneguitti et al. Artificial intelligence-driven screening system for rapid image-based classification of 12-lead ECG exams: a promising solution for emergency room prioritization. Ieee access, v. 11, p. 121739-121752, 2023Tradução . . Disponível em: https://observatorio.fm.usp.br/handle/OPI/57369. Acesso em: 25 jan. 2026.APA
Dias, F. M., Ribeiro, E., Moreno, R. A., Ribeiro, A. H., Samesima, N., Pastore, C. A., et al. (2023). Artificial intelligence-driven screening system for rapid image-based classification of 12-lead ECG exams: a promising solution for emergency room prioritization. Ieee access, 11, 121739-121752. doi:10.1109/ACCESS.2023.3328538NLM
Dias FM, Ribeiro E, Moreno RA, Ribeiro AH, Samesima N, Pastore CA, Krieger JE, Gutierrez MA. Artificial intelligence-driven screening system for rapid image-based classification of 12-lead ECG exams: a promising solution for emergency room prioritization [Internet]. Ieee access. 2023 ; 11 121739-121752.[citado 2026 jan. 25 ] Available from: https://observatorio.fm.usp.br/handle/OPI/57369Vancouver
Dias FM, Ribeiro E, Moreno RA, Ribeiro AH, Samesima N, Pastore CA, Krieger JE, Gutierrez MA. Artificial intelligence-driven screening system for rapid image-based classification of 12-lead ECG exams: a promising solution for emergency room prioritization [Internet]. Ieee access. 2023 ; 11 121739-121752.[citado 2026 jan. 25 ] Available from: https://observatorio.fm.usp.br/handle/OPI/57369
