Filtros : "Financiado pelo Conicet, Argentina" "IME" Removidos: "Queiroz, Marcelo Gomes de" "IFSC-FCM" "2011" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: HOLOMORFIA EM DIMENSÃO INFINITA, ANÁLISE FUNCIONAL, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARANDO, Daniel e MURO, Santiago e VIEIRA, Daniela Mariz Silva. The algebra of bounded-type holomorphic functions on the ball. Proceedings of the American Mathematical Society, v. 148, n. 6, p. 2447-2457, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14471. Acesso em: 15 nov. 2024.
    • APA

      Carando, D., Muro, S., & Vieira, D. M. S. (2020). The algebra of bounded-type holomorphic functions on the ball. Proceedings of the American Mathematical Society, 148( 6), 2447-2457. doi:10.1090/proc/14471
    • NLM

      Carando D, Muro S, Vieira DMS. The algebra of bounded-type holomorphic functions on the ball [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2447-2457.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc/14471
    • Vancouver

      Carando D, Muro S, Vieira DMS. The algebra of bounded-type holomorphic functions on the ball [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2447-2457.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc/14471
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, v. 239, n. 1, p. 99-128, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11856-020-2048-2. Acesso em: 15 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, 239( 1), 99-128. doi:10.1007/s11856-020-2048-2
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11856-020-2048-2
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11856-020-2048-2
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, v. 148, n. 6, p. 2421-2432, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14936. Acesso em: 15 nov. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, 148( 6), 2421-2432. doi:10.1090/proc/14936
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc/14936
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc/14936
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, v. 556, p. 412-436, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.02.032. Acesso em: 15 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, 556, 412-436. doi:10.1016/j.jalgebra.2020.02.032
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.02.032
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.02.032
  • Conference titles: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: K-TEORIA, HOMOLOGIA, ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’s conjecture. 2019, Anais.. Rio de Janeiro: Impa, 2019. Disponível em: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf. Acesso em: 15 nov. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2019). Split bounded extension algebras and Han’s conjecture. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 nov. 15 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 nov. 15 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, v. 540, p. 63-77, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.08.029. Acesso em: 15 nov. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., Schroll, S., & Solotar, A. (2019). The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, 540, 63-77. doi:10.1016/j.jalgebra.2019.08.029
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e SOLOTAR, Andrea e VOLKOV, Yury. Generating degrees for graded projective resolutions. Journal of Algebra and Its Applications, v. 17, n. 10, p. 1-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818501918. Acesso em: 15 nov. 2024.
    • APA

      Marcos, E. do N., Solotar, A., & Volkov, Y. (2018). Generating degrees for graded projective resolutions. Journal of Algebra and Its Applications, 17( 10), 1-15. doi:10.1142/S0219498818501918
    • NLM

      Marcos E do N, Solotar A, Volkov Y. Generating degrees for graded projective resolutions [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1-15.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219498818501918
    • Vancouver

      Marcos E do N, Solotar A, Volkov Y. Generating degrees for graded projective resolutions [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1-15.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219498818501918
  • Source: Geoderma. Unidade: IME

    Assunto: ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASQUINI, Andrea I. et al. Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma, v. 295, p. 53-68, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geoderma.2017.01.033. Acesso em: 15 nov. 2024.
    • APA

      Pasquini, A. I., Campodonico, V. A., Rouzaut, S., & Giampaoli, V. (2017). Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma, 295, 53-68. doi:10.1016/j.geoderma.2017.01.033
    • NLM

      Pasquini AI, Campodonico VA, Rouzaut S, Giampaoli V. Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina [Internet]. Geoderma. 2017 ; 295 53-68.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.geoderma.2017.01.033
    • Vancouver

      Pasquini AI, Campodonico VA, Rouzaut S, Giampaoli V. Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina [Internet]. Geoderma. 2017 ; 295 53-68.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.geoderma.2017.01.033
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Assunto: ESPAÇOS SIMÉTRICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e OLMOS, Carlos e TOJEIRO, Ruy. Copolarity of isometric actions. Transactions of the American Mathematical Society, v. 356, n. 4, p. 1585-1608, 2004Tradução . . Disponível em: https://doi.org/10.1090/S0002-9947-03-03427-5. Acesso em: 15 nov. 2024.
    • APA

      Gorodski, C., Olmos, C., & Tojeiro, R. (2004). Copolarity of isometric actions. Transactions of the American Mathematical Society, 356( 4), 1585-1608. doi:10.1090/S0002-9947-03-03427-5
    • NLM

      Gorodski C, Olmos C, Tojeiro R. Copolarity of isometric actions [Internet]. Transactions of the American Mathematical Society. 2004 ; 356( 4): 1585-1608.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/S0002-9947-03-03427-5
    • Vancouver

      Gorodski C, Olmos C, Tojeiro R. Copolarity of isometric actions [Internet]. Transactions of the American Mathematical Society. 2004 ; 356( 4): 1585-1608.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/S0002-9947-03-03427-5
  • Source: Stochastic Processes and their Applications. Unidades: IEA, IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRESSAUD, Xavier e FERNANDEZ, Roberto e GALVES, Antonio. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach. Stochastic Processes and their Applications, v. 83, n. 1, p. 127-138, 1999Tradução . . Disponível em: https://doi.org/10.1016/S0304-4149(99)00025-3. Acesso em: 15 nov. 2024.
    • APA

      Bressaud, X., Fernandez, R., & Galves, A. (1999). Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach. Stochastic Processes and their Applications, 83( 1), 127-138. doi:10.1016/S0304-4149(99)00025-3
    • NLM

      Bressaud X, Fernandez R, Galves A. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach [Internet]. Stochastic Processes and their Applications. 1999 ; 83( 1): 127-138.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/S0304-4149(99)00025-3
    • Vancouver

      Bressaud X, Fernandez R, Galves A. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach [Internet]. Stochastic Processes and their Applications. 1999 ; 83( 1): 127-138.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/S0304-4149(99)00025-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024