Fonte: Information Sciences. Unidades: ICMC, EP
Assuntos: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS), PROGNÓSTICO, TECNOLOGIAS DA SAÚDE
ABNT
RODRIGUES JUNIOR, José Fernando et al. LIG-Doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks. Information Sciences, v. 545, p. 813-827, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2020.09.024. Acesso em: 18 nov. 2024.APA
Rodrigues Junior, J. F., Gutierrez, M. A., Spadon, G., Machado, B. B., & Amer-Yahia, S. (2021). LIG-Doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks. Information Sciences, 545, 813-827. doi:10.1016/j.ins.2020.09.024NLM
Rodrigues Junior JF, Gutierrez MA, Spadon G, Machado BB, Amer-Yahia S. LIG-Doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks [Internet]. Information Sciences. 2021 ; 545 813-827.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.ins.2020.09.024Vancouver
Rodrigues Junior JF, Gutierrez MA, Spadon G, Machado BB, Amer-Yahia S. LIG-Doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks [Internet]. Information Sciences. 2021 ; 545 813-827.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.ins.2020.09.024