Filtros : "2017" "Journal of Mathematical Analysis and Applications" Removidos: "Polônia" "Hernandez, Michelle Fernanda Pierri" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: EP

    Subjects: PROBLEMAS INVERSOS, EQUAÇÕES NÃO LINEARES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAWANO, Alexandre. Uniqueness in the determination of unknown coefficients of an Euler–Bernoulli beam equation with observation in an arbitrary small interval of time. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 351-60, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.019. Acesso em: 18 nov. 2024.
    • APA

      Kawano, A. (2017). Uniqueness in the determination of unknown coefficients of an Euler–Bernoulli beam equation with observation in an arbitrary small interval of time. Journal of Mathematical Analysis and Applications, 450( 1), 351-60. doi:10.1016/j.jmaa.2017.03.019
    • NLM

      Kawano A. Uniqueness in the determination of unknown coefficients of an Euler–Bernoulli beam equation with observation in an arbitrary small interval of time [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 351-60.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.019
    • Vancouver

      Kawano A. Uniqueness in the determination of unknown coefficients of an Euler–Bernoulli beam equation with observation in an arbitrary small interval of time [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 351-60.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.019
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ANÁLISE HARMÔNICA EM GRUPOS DE LIE, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana e GALEGO, Eloi Medina e GONZÁLEZ, Manuel. Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, v. 446, n. 1, p. 299-306, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.08.057. Acesso em: 18 nov. 2024.
    • APA

      Cely, L., Galego, E. M., & González, M. (2017). Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, 446( 1), 299-306. doi:10.1016/j.jmaa.2016.08.057
    • NLM

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
    • Vancouver

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos e CÔRTES, Vinícius Morelli e GALEGO, Eloi Medina. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 12-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.009. Acesso em: 18 nov. 2024.
    • APA

      Cidral, F. C., Côrtes, V. M., & Galego, E. M. (2017). A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, 450( 1), 12-20. doi:10.1016/j.jmaa.2017.01.009
    • NLM

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.009
    • Vancouver

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.009

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024