Filtros : "Singapura" "International Journal of Mathematics" Removidos: "Zílio, Sérgio Carlos" "Holandês" Limpar

Filtros



Refine with date range


  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, ESPAÇOS ANALÍTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRULHA JÚNIOR, Nivaldo de Góes e RUIZ, Camila Machado e SANTANA, Hellen. The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics, v. 33, n. 4, p. 2250029-1-2250029-17, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0129167X2250029X. Acesso em: 09 nov. 2024.
    • APA

      Grulha Júnior, N. de G., Ruiz, C. M., & Santana, H. (2022). The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics, 33( 4), 2250029-1-2250029-17. doi:10.1142/S0129167X2250029X
    • NLM

      Grulha Júnior N de G, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map [Internet]. International Journal of Mathematics. 2022 ; 33( 4): 2250029-1-2250029-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X2250029X
    • Vancouver

      Grulha Júnior N de G, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map [Internet]. International Journal of Mathematics. 2022 ; 33( 4): 2250029-1-2250029-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X2250029X
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: DEFORMAÇÕES DE SINGULARIDADES, SUPERFÍCIES ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EYRAL, Christophe e RUAS, Maria Aparecida Soares. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, v. 30, n. 10, p. 1950053-1-1950053-17, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0129167X19500538. Acesso em: 09 nov. 2024.
    • APA

      Eyral, C., & Ruas, M. A. S. (2019). On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, 30( 10), 1950053-1-1950053-17. doi:10.1142/S0129167X19500538
    • NLM

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X19500538
    • Vancouver

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X19500538
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA ALGÉBRICA, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean-Paul e CHACHAPOYAS, Nancy e RUAS, Maria Aparecida Soares. Generic sections of essentially isolated determinantal singularities. International Journal of Mathematics, v. 28, n. 11, p. 1750083-1-1750083-13, 2017Tradução . . Disponível em: https://doi.org/10.1142/S0129167X17500835. Acesso em: 09 nov. 2024.
    • APA

      Brasselet, J. -P., Chachapoyas, N., & Ruas, M. A. S. (2017). Generic sections of essentially isolated determinantal singularities. International Journal of Mathematics, 28( 11), 1750083-1-1750083-13. doi:10.1142/S0129167X17500835
    • NLM

      Brasselet J-P, Chachapoyas N, Ruas MAS. Generic sections of essentially isolated determinantal singularities [Internet]. International Journal of Mathematics. 2017 ; 28( 11): 1750083-1-1750083-13.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X17500835
    • Vancouver

      Brasselet J-P, Chachapoyas N, Ruas MAS. Generic sections of essentially isolated determinantal singularities [Internet]. International Journal of Mathematics. 2017 ; 28( 11): 1750083-1-1750083-13.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X17500835
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL, ÁLGEBRA, GEOMETRIA ALGÉBRICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUZZO, Ugo et al. Nonabelian holomorphic Lie algebroid extensions. International Journal of Mathematics, v. 26, n. 4, p. 1550040-1-1550040-26, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0129167X15500408. Acesso em: 09 nov. 2024.
    • APA

      Bruzzo, U., Mencattini, I., Rubtsov, V., & Tortella, P. (2015). Nonabelian holomorphic Lie algebroid extensions. International Journal of Mathematics, 26( 4), 1550040-1-1550040-26. doi:10.1142/S0129167X15500408
    • NLM

      Bruzzo U, Mencattini I, Rubtsov V, Tortella P. Nonabelian holomorphic Lie algebroid extensions [Internet]. International Journal of Mathematics. 2015 ; 26( 4): 1550040-1-1550040-26.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X15500408
    • Vancouver

      Bruzzo U, Mencattini I, Rubtsov V, Tortella P. Nonabelian holomorphic Lie algebroid extensions [Internet]. International Journal of Mathematics. 2015 ; 26( 4): 1550040-1-1550040-26.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X15500408
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CISNEROS-MOLINA, José Luis e SEADE, José e GRULHA JÚNIOR, Nivaldo de Góes. On the topology of real analytic maps. International Journal of Mathematics, v. 25, n. 7, p. 1450069-1-1450069-30, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0129167X14500694. Acesso em: 09 nov. 2024.
    • APA

      Cisneros-Molina, J. L., Seade, J., & Grulha Júnior, N. de G. (2014). On the topology of real analytic maps. International Journal of Mathematics, 25( 7), 1450069-1-1450069-30. doi:10.1142/S0129167X14500694
    • NLM

      Cisneros-Molina JL, Seade J, Grulha Júnior N de G. On the topology of real analytic maps [Internet]. International Journal of Mathematics. 2014 ; 25( 7): 1450069-1-1450069-30.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X14500694
    • Vancouver

      Cisneros-Molina JL, Seade J, Grulha Júnior N de G. On the topology of real analytic maps [Internet]. International Journal of Mathematics. 2014 ; 25( 7): 1450069-1-1450069-30.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X14500694
  • Source: International Journal of Mathematics. Unidade: ICMC

    Assunto: SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e SAIA, Marcelo José. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n. International Journal of Mathematics, v. 17, n. 8, p. 887-903, 2006Tradução . . Acesso em: 09 nov. 2024.
    • APA

      Jorge Pérez, V. H., & Saia, M. J. (2006). Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),nInternational Journal of Mathematics, 17( 8), 887-903.
    • NLM

      Jorge Pérez VH, Saia MJ. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n
    • Vancouver

      Jorge Pérez VH, Saia MJ. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n
  • Source: International Journal of Mathematics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALBEL, Elisha e GORODSKI, Claudio e RUMIN, Michel. Holonomy of sub-riemannian manifolds. International Journal of Mathematics, v. 8, n. 3, p. 317-344, 1997Tradução . . Disponível em: https://doi.org/10.1142/S0129167X97000159. Acesso em: 09 nov. 2024.
    • APA

      Falbel, E., Gorodski, C., & Rumin, M. (1997). Holonomy of sub-riemannian manifolds. International Journal of Mathematics, 8( 3), 317-344. doi:10.1142/S0129167X97000159
    • NLM

      Falbel E, Gorodski C, Rumin M. Holonomy of sub-riemannian manifolds [Internet]. International Journal of Mathematics. 1997 ; 8( 3): 317-344.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X97000159
    • Vancouver

      Falbel E, Gorodski C, Rumin M. Holonomy of sub-riemannian manifolds [Internet]. International Journal of Mathematics. 1997 ; 8( 3): 317-344.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X97000159
  • Source: International Journal of Mathematics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, K-TEORIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERRI, Cristina. Non-commutative deformations of C(T2) and k-theory. International Journal of Mathematics, v. 8, n. 5, p. 555-571, 1997Tradução . . Disponível em: https://doi.org/10.1142/S0129167X97000287. Acesso em: 09 nov. 2024.
    • APA

      Cerri, C. (1997). Non-commutative deformations of C(T2) and k-theory. International Journal of Mathematics, 8( 5), 555-571. doi:10.1142/S0129167X97000287
    • NLM

      Cerri C. Non-commutative deformations of C(T2) and k-theory [Internet]. International Journal of Mathematics. 1997 ; 8( 5): 555-571.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X97000287
    • Vancouver

      Cerri C. Non-commutative deformations of C(T2) and k-theory [Internet]. International Journal of Mathematics. 1997 ; 8( 5): 555-571.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X97000287
  • Source: International Journal of Mathematics. Unidade: IME

    Assunto: C* ÁLGEBRAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EXEL FILHO, Ruy e LORING, Terry A. Finite-dimensional representations of free product c-algebras. International Journal of Mathematics, v. 3 , n. 4, p. 469-476, 1992Tradução . . Disponível em: https://doi.org/10.1142/S0129167X92000217. Acesso em: 09 nov. 2024.
    • APA

      Exel Filho, R., & Loring, T. A. (1992). Finite-dimensional representations of free product c-algebras. International Journal of Mathematics, 3 ( 4), 469-476. doi:10.1142/S0129167X92000217
    • NLM

      Exel Filho R, Loring TA. Finite-dimensional representations of free product c-algebras [Internet]. International Journal of Mathematics. 1992 ; 3 ( 4): 469-476.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X92000217
    • Vancouver

      Exel Filho R, Loring TA. Finite-dimensional representations of free product c-algebras [Internet]. International Journal of Mathematics. 1992 ; 3 ( 4): 469-476.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1142/S0129167X92000217

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024