Filtros : "Holanda" "2020" "IQ" Removidos: "IB-BIO" "LAGO, CLAUDIMIR LUCIO DO" "xk" "2019" "Sociedade Brasileira de Quimica" Limpar

Filtros



Limitar por data


  • Fonte: BBA - Biomembranes. Unidade: IQ

    Assuntos: MITOCÔNDRIAS, APOPTOSE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOZELLI JUNIOR, José Carlos et al. Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. BBA - Biomembranes, v. 1862, p. 1-12 art. 183241, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.bbamem.2020.183241. Acesso em: 08 ago. 2024.
    • APA

      Bozelli Junior, J. C., Hou, Y. H., Schreier, S., & Epand, R. M. (2020). Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. BBA - Biomembranes, 1862, 1-12 art. 183241. doi:10.1016/j.bbamem.2020.183241
    • NLM

      Bozelli Junior JC, Hou YH, Schreier S, Epand RM. Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization [Internet]. BBA - Biomembranes. 2020 ; 1862 1-12 art. 183241.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.bbamem.2020.183241
    • Vancouver

      Bozelli Junior JC, Hou YH, Schreier S, Epand RM. Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization [Internet]. BBA - Biomembranes. 2020 ; 1862 1-12 art. 183241.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.bbamem.2020.183241
  • Fonte: Cellulose. Unidade: IQ

    Assuntos: CELULOSE, BIOMASSA, ALGAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PANIZ, Oscar Giordani et al. Cellulosic material obtained from Antarctic algae biomass. Cellulose, v. 27, p. 113–126, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10570-019-02794-2. Acesso em: 08 ago. 2024.
    • APA

      Paniz, O. G., Pereira, C. M. P., Pacheco, B. S., Wolke, S. I., Maron, G. K., Mansilla, A., et al. (2020). Cellulosic material obtained from Antarctic algae biomass. Cellulose, 27, 113–126. doi:10.1007/s10570-019-02794-2
    • NLM

      Paniz OG, Pereira CMP, Pacheco BS, Wolke SI, Maron GK, Mansilla A, Colepicolo P, Orlandi MO, Osorio AG, Carreno NLV. Cellulosic material obtained from Antarctic algae biomass [Internet]. Cellulose. 2020 ; 27 113–126.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-019-02794-2
    • Vancouver

      Paniz OG, Pereira CMP, Pacheco BS, Wolke SI, Maron GK, Mansilla A, Colepicolo P, Orlandi MO, Osorio AG, Carreno NLV. Cellulosic material obtained from Antarctic algae biomass [Internet]. Cellulose. 2020 ; 27 113–126.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-019-02794-2
  • Fonte: Colloids and Surfaces B: Biointerfaces. Unidades: FO, IQ

    Assuntos: NANOPARTÍCULAS, QUÍMICA DE SUPERFÍCIE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Roberta Mansini et al. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells. Colloids and Surfaces B: Biointerfaces, v. 186, p. 1-7 art. 110717, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfb.2019.110717. Acesso em: 08 ago. 2024.
    • APA

      Cardoso, R. M., Deda, D. K., Toma, S. H., Baptista, M. da S., & Araki, K. (2020). Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells. Colloids and Surfaces B: Biointerfaces, 186, 1-7 art. 110717. doi:10.1016/j.colsurfb.2019.110717
    • NLM

      Cardoso RM, Deda DK, Toma SH, Baptista M da S, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells [Internet]. Colloids and Surfaces B: Biointerfaces. 2020 ; 186 1-7 art. 110717.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.colsurfb.2019.110717
    • Vancouver

      Cardoso RM, Deda DK, Toma SH, Baptista M da S, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells [Internet]. Colloids and Surfaces B: Biointerfaces. 2020 ; 186 1-7 art. 110717.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.colsurfb.2019.110717
  • Fonte: Journal of Molecular Liquids. Unidade: IQ

    Assuntos: LÍQUIDOS IÔNICOS, HIDROGÊNIO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Mauro Carlos Costa. Strong anion–anion hydrogen bond in the ionic liquid 1-ethyl-3- methylimidazolium hydrogen sulfate. Journal of Molecular Liquids, v. 310, p. 1-7 art. 113178, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.molliq.2020.113178. Acesso em: 08 ago. 2024.
    • APA

      Ribeiro, M. C. C. (2020). Strong anion–anion hydrogen bond in the ionic liquid 1-ethyl-3- methylimidazolium hydrogen sulfate. Journal of Molecular Liquids, 310, 1-7 art. 113178. doi:10.1016/j.molliq.2020.113178
    • NLM

      Ribeiro MCC. Strong anion–anion hydrogen bond in the ionic liquid 1-ethyl-3- methylimidazolium hydrogen sulfate [Internet]. Journal of Molecular Liquids. 2020 ; 310 1-7 art. 113178.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.113178
    • Vancouver

      Ribeiro MCC. Strong anion–anion hydrogen bond in the ionic liquid 1-ethyl-3- methylimidazolium hydrogen sulfate [Internet]. Journal of Molecular Liquids. 2020 ; 310 1-7 art. 113178.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.113178
  • Fonte: Biochimica et Biophysica Acta. Unidades: IQ, FM

    Assuntos: CÉLULAS ENDOTELIAIS, ÁCIDO ÚRICO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MINEIRO, Marcela Franco et al. Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence. Biochimica et Biophysica Acta, v. 1864, n. 3, p. 1-8 art. 129481, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.bbagen.2019.129481. Acesso em: 08 ago. 2024.
    • APA

      Mineiro, M. F., Patricio, E. de S., Peixoto, A. S., Araujo, T. L. S., Silva, R. P. da, Moretti, A. I. S., et al. (2020). Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence. Biochimica et Biophysica Acta, 1864( 3), 1-8 art. 129481. doi:10.1016/j.bbagen.2019.129481
    • NLM

      Mineiro MF, Patricio E de S, Peixoto AS, Araujo TLS, Silva RP da, Moretti AIS, Lima F da S, Laurindo FRM, Meotti FC. Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence [Internet]. Biochimica et Biophysica Acta. 2020 ; 1864( 3): 1-8 art. 129481.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.bbagen.2019.129481
    • Vancouver

      Mineiro MF, Patricio E de S, Peixoto AS, Araujo TLS, Silva RP da, Moretti AIS, Lima F da S, Laurindo FRM, Meotti FC. Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence [Internet]. Biochimica et Biophysica Acta. 2020 ; 1864( 3): 1-8 art. 129481.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.bbagen.2019.129481
  • Fonte: Cellular Oncology. Unidades: IQ, BIOINFORMÁTICA

    Assuntos: NEOPLASIAS PANCREÁTICAS, BIOMARCADORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES FILHO, Sandro Mascena et al. Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer. Cellular Oncology, v. 43, p. 445–460, 2020Tradução . . Disponível em: https://doi.org/10.1007/s13402-020-00498-5. Acesso em: 08 ago. 2024.
    • APA

      Gomes Filho, S. M., Santos, E. O. dos, Bertoldi, E. R. M., Scalabrini, L. C., Heidrich, V., Dazzani, B., et al. (2020). Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer. Cellular Oncology, 43, 445–460. doi:10.1007/s13402-020-00498-5
    • NLM

      Gomes Filho SM, Santos EO dos, Bertoldi ERM, Scalabrini LC, Heidrich V, Dazzani B, Levantini E, Reis EM, Bassères DS. Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer [Internet]. Cellular Oncology. 2020 ; 43 445–460.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s13402-020-00498-5
    • Vancouver

      Gomes Filho SM, Santos EO dos, Bertoldi ERM, Scalabrini LC, Heidrich V, Dazzani B, Levantini E, Reis EM, Bassères DS. Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer [Internet]. Cellular Oncology. 2020 ; 43 445–460.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s13402-020-00498-5
  • Fonte: Applied Catalysis B. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, OURO, CATÁLISE, AMINAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORIO, Jhonatan Luiz et al. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B, v. 267, p. 1-7 art. 118728, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.apcatb.2020.118728. Acesso em: 08 ago. 2024.
    • APA

      Fiorio, J. L., Araújo, T. P., Barbosa, E. C. M., Quiroz, J., Camargo, P. H. C. de, Rudolph, M., et al. (2020). Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B, 267, 1-7 art. 118728. doi:10.1016/j.apcatb.2020.118728
    • NLM

      Fiorio JL, Araújo TP, Barbosa ECM, Quiroz J, Camargo PHC de, Rudolph M, Hashmi ASK, Rossi LM. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source [Internet]. Applied Catalysis B. 2020 ; 267 1-7 art. 118728.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.apcatb.2020.118728
    • Vancouver

      Fiorio JL, Araújo TP, Barbosa ECM, Quiroz J, Camargo PHC de, Rudolph M, Hashmi ASK, Rossi LM. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source [Internet]. Applied Catalysis B. 2020 ; 267 1-7 art. 118728.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.apcatb.2020.118728
  • Fonte: Physica B. Unidade: IQ

    Assuntos: LUMINESCÊNCIA, TERMOLUMINESCÊNCIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALKAMAKI, Marja et al. Persistent luminescence excitation spectroscopy of BaAl2O4:Eu2+,Dy3+. Physica B, v. 593, p. 1-6 art. 411947, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.physb.2019.411947. Acesso em: 08 ago. 2024.
    • APA

      Malkamaki, M., Bos, A. J. J., Dorenbos, P., Lastusaari, M., Rodrigues, L. C. V., Swart, H. C., & Hölsa, J. (2020). Persistent luminescence excitation spectroscopy of BaAl2O4:Eu2+,Dy3+. Physica B, 593, 1-6 art. 411947. doi:10.1016/j.physb.2019.411947
    • NLM

      Malkamaki M, Bos AJJ, Dorenbos P, Lastusaari M, Rodrigues LCV, Swart HC, Hölsa J. Persistent luminescence excitation spectroscopy of BaAl2O4:Eu2+,Dy3+ [Internet]. Physica B. 2020 ; 593 1-6 art. 411947.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.physb.2019.411947
    • Vancouver

      Malkamaki M, Bos AJJ, Dorenbos P, Lastusaari M, Rodrigues LCV, Swart HC, Hölsa J. Persistent luminescence excitation spectroscopy of BaAl2O4:Eu2+,Dy3+ [Internet]. Physica B. 2020 ; 593 1-6 art. 411947.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.physb.2019.411947
  • Fonte: Journal of Water Process Engineering. Unidade: IQ

    Assuntos: ELETROCATÁLISE, ÁGUAS RESIDUÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERALDINO, Henrique C. L et al. Electrochemical generation of H2O2 using gas diffusion electrode improved with rGO intensified with the Fe3O4/GO catalyst for degradation of textile wastewater. Journal of Water Process Engineering, v. 36, p. 1-11 art. 101377, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jwpe.2020.101377. Acesso em: 08 ago. 2024.
    • APA

      Geraldino, H. C. L., Freitas, T. K. F. S., Manholer, D. D., França, F., Oliveira, J. H., Volnistem, E. A., et al. (2020). Electrochemical generation of H2O2 using gas diffusion electrode improved with rGO intensified with the Fe3O4/GO catalyst for degradation of textile wastewater. Journal of Water Process Engineering, 36, 1-11 art. 101377. doi:10.1016/j.jwpe.2020.101377
    • NLM

      Geraldino HCL, Freitas TKFS, Manholer DD, França F, Oliveira JH, Volnistem EA, Lima ARF, Bertotti M, Girotto EM. Electrochemical generation of H2O2 using gas diffusion electrode improved with rGO intensified with the Fe3O4/GO catalyst for degradation of textile wastewater [Internet]. Journal of Water Process Engineering. 2020 ; 36 1-11 art. 101377.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.jwpe.2020.101377
    • Vancouver

      Geraldino HCL, Freitas TKFS, Manholer DD, França F, Oliveira JH, Volnistem EA, Lima ARF, Bertotti M, Girotto EM. Electrochemical generation of H2O2 using gas diffusion electrode improved with rGO intensified with the Fe3O4/GO catalyst for degradation of textile wastewater [Internet]. Journal of Water Process Engineering. 2020 ; 36 1-11 art. 101377.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.jwpe.2020.101377
  • Fonte: Ultramicroscopy. Unidades: IFSC, IQ, IMT

    Assuntos: SENSOR, ESPECTROSCOPIA DE ABSORÇÃO ATÔMICA, ESCLEROSE MÚLTIPLA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Pâmela Soto et al. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy, v. 211, p. 112946-1-112946-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ultramic.2020.112946. Acesso em: 08 ago. 2024.
    • APA

      Garcia, P. S., Brum, D. G., Oliveira Junior, O. N. de, Higa, A. M., Ierich, J. C. M., Moraes, A. de S., et al. (2020). Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy, 211, 112946-1-112946-8. doi:10.1016/j.ultramic.2020.112946
    • NLM

      Garcia PS, Brum DG, Oliveira Junior ON de, Higa AM, Ierich JCM, Moraes A de S, Shimizu FM, Okuda-Shinagawa NM, Peroni LA, Gama PD da, Machini MT, Leite FL. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis [Internet]. Ultramicroscopy. 2020 ; 211 112946-1-112946-8.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ultramic.2020.112946
    • Vancouver

      Garcia PS, Brum DG, Oliveira Junior ON de, Higa AM, Ierich JCM, Moraes A de S, Shimizu FM, Okuda-Shinagawa NM, Peroni LA, Gama PD da, Machini MT, Leite FL. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis [Internet]. Ultramicroscopy. 2020 ; 211 112946-1-112946-8.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ultramic.2020.112946
  • Fonte: Journal of Molecular Liquids. Unidades: IFSC, IQ

    Assuntos: MEDICINA (APLICAÇÕES), NANOPARTÍCULAS, TERAPIA FOTODINÂMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVÃO, Bianca Martins et al. Synthetic chlorin derivative self-prevented from aggregation: behavior in homogeneous medium for PDT applications. Journal of Molecular Liquids, v. 320, p. 114363-1-114363-11, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.molliq.2020.114363. Acesso em: 08 ago. 2024.
    • APA

      Estevão, B. M., Freitas, C. F. de, Franciscato, D. S., Assis, F. F. de, Oliveira, K. T. de, Hioka, N., et al. (2020). Synthetic chlorin derivative self-prevented from aggregation: behavior in homogeneous medium for PDT applications. Journal of Molecular Liquids, 320, 114363-1-114363-11. doi:10.1016/j.molliq.2020.114363
    • NLM

      Estevão BM, Freitas CF de, Franciscato DS, Assis FF de, Oliveira KT de, Hioka N, Caetano W, Muniz EC. Synthetic chlorin derivative self-prevented from aggregation: behavior in homogeneous medium for PDT applications [Internet]. Journal of Molecular Liquids. 2020 ; 320 114363-1-114363-11.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.114363
    • Vancouver

      Estevão BM, Freitas CF de, Franciscato DS, Assis FF de, Oliveira KT de, Hioka N, Caetano W, Muniz EC. Synthetic chlorin derivative self-prevented from aggregation: behavior in homogeneous medium for PDT applications [Internet]. Journal of Molecular Liquids. 2020 ; 320 114363-1-114363-11.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.114363
  • Fonte: Future Energy: Improved, Sustainable and Clean Options for Our Planet. Unidade: IQ

    Assuntos: BIOCOMBUSTÍVEIS, TRANSPORTES

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Luiz Augusto Horta et al. Biofuels for Transport. Future Energy: Improved, Sustainable and Clean Options for Our Planet. Tradução . Amsterdam: Elsevier, 2020. . . Acesso em: 08 ago. 2024.
    • APA

      Nogueira, L. A. H., Cruz, C. H. de B., Souza, G. M., & Cortez, L. A. B. (2020). Biofuels for Transport. In Future Energy: Improved, Sustainable and Clean Options for Our Planet. Amsterdam: Elsevier.
    • NLM

      Nogueira LAH, Cruz CH de B, Souza GM, Cortez LAB. Biofuels for Transport. In: Future Energy: Improved, Sustainable and Clean Options for Our Planet. Amsterdam: Elsevier; 2020. [citado 2024 ago. 08 ]
    • Vancouver

      Nogueira LAH, Cruz CH de B, Souza GM, Cortez LAB. Biofuels for Transport. In: Future Energy: Improved, Sustainable and Clean Options for Our Planet. Amsterdam: Elsevier; 2020. [citado 2024 ago. 08 ]
  • Fonte: Journal of Molecular Structure. Unidade: IQ

    Assuntos: CALCOGÊNIOS, COMPOSTOS HETEROCÍCLICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASAD, Mohammad et al. Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies. Journal of Molecular Structure, v. 1201, p. 1-14 art. 127186, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.molstruc.2019.127186. Acesso em: 08 ago. 2024.
    • APA

      Asad, M., Arshad, M. N., Khan, S. A., Oves, M., Khalid, M., Asiri, A. M., & Braga, A. A. C. (2020). Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies. Journal of Molecular Structure, 1201, 1-14 art. 127186. doi:10.1016/j.molstruc.2019.127186
    • NLM

      Asad M, Arshad MN, Khan SA, Oves M, Khalid M, Asiri AM, Braga AAC. Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies [Internet]. Journal of Molecular Structure. 2020 ; 1201 1-14 art. 127186.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molstruc.2019.127186
    • Vancouver

      Asad M, Arshad MN, Khan SA, Oves M, Khalid M, Asiri AM, Braga AAC. Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies [Internet]. Journal of Molecular Structure. 2020 ; 1201 1-14 art. 127186.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molstruc.2019.127186
  • Fonte: International Journal of Pharmaceutics. Unidades: FCF, IQ

    Assuntos: NANOTECNOLOGIA, PLANEJAMENTO DE FÁRMACOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Ana Paula et al. Dendrimers in the context of nanomedicine. International Journal of Pharmaceutics, v. 573, n. 5, p. 1-23 art. 118814, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijpharm.2019.118814. Acesso em: 08 ago. 2024.
    • APA

      Dias, A. P., Santos, S. da S., Silva, J. V. da, Parise Filho, R., Ferreira, E. I., El Seoud, O. A., & Giarolla, J. (2020). Dendrimers in the context of nanomedicine. International Journal of Pharmaceutics, 573( 5), 1-23 art. 118814. doi:10.1016/j.ijpharm.2019.118814
    • NLM

      Dias AP, Santos S da S, Silva JV da, Parise Filho R, Ferreira EI, El Seoud OA, Giarolla J. Dendrimers in the context of nanomedicine [Internet]. International Journal of Pharmaceutics. 2020 ; 573( 5): 1-23 art. 118814.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijpharm.2019.118814
    • Vancouver

      Dias AP, Santos S da S, Silva JV da, Parise Filho R, Ferreira EI, El Seoud OA, Giarolla J. Dendrimers in the context of nanomedicine [Internet]. International Journal of Pharmaceutics. 2020 ; 573( 5): 1-23 art. 118814.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijpharm.2019.118814
  • Fonte: Energy Storage Materials. Unidade: IQ

    Assuntos: LÍQUIDOS IÔNICOS, SILÍCIO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMIREZ, Nedher Sanchez et al. Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes. Energy Storage Materials, v. 25, p. 477-486, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ensm.2019.09.035. Acesso em: 08 ago. 2024.
    • APA

      Ramirez, N. S., Assresahegn, B. D., Torresi, R. M., & Bélanger, D. (2020). Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes. Energy Storage Materials, 25, 477-486. doi:10.1016/j.ensm.2019.09.035
    • NLM

      Ramirez NS, Assresahegn BD, Torresi RM, Bélanger D. Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes [Internet]. Energy Storage Materials. 2020 ; 25 477-486.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ensm.2019.09.035
    • Vancouver

      Ramirez NS, Assresahegn BD, Torresi RM, Bélanger D. Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes [Internet]. Energy Storage Materials. 2020 ; 25 477-486.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ensm.2019.09.035
  • Fonte: Catalysis Communications. Unidade: IQ

    Assuntos: SÍNTESE ORGÂNICA, OXIDAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Alana B. V et al. A sustainable access to ynones through laccase/TEMPO-catalyzed metal- and halogen-free aerobic oxidation of propargylic alcohols in aqueous medium. Catalysis Communications, v. 137, p. 1-6 art. 105946, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.catcom.2020.105946. Acesso em: 08 ago. 2024.
    • APA

      Silva, A. B. V., Silva, E. D., Santos, A. A. dos, & Princival, J. L. (2020). A sustainable access to ynones through laccase/TEMPO-catalyzed metal- and halogen-free aerobic oxidation of propargylic alcohols in aqueous medium. Catalysis Communications, 137, 1-6 art. 105946. doi:10.1016/j.catcom.2020.105946
    • NLM

      Silva ABV, Silva ED, Santos AA dos, Princival JL. A sustainable access to ynones through laccase/TEMPO-catalyzed metal- and halogen-free aerobic oxidation of propargylic alcohols in aqueous medium [Internet]. Catalysis Communications. 2020 ; 137 1-6 art. 105946.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.catcom.2020.105946
    • Vancouver

      Silva ABV, Silva ED, Santos AA dos, Princival JL. A sustainable access to ynones through laccase/TEMPO-catalyzed metal- and halogen-free aerobic oxidation of propargylic alcohols in aqueous medium [Internet]. Catalysis Communications. 2020 ; 137 1-6 art. 105946.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.catcom.2020.105946
  • Fonte: Journal of Molecular Liquids. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, FLUORESCÊNCIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GEROLA, Adriana P et al. Anion binding to surfactant aggregates: auCl4− in cationic, anionic and zwitterionic micelles. Journal of Molecular Liquids, v. 314, p. 1-6 art. 113607, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.molliq.2020.113607. Acesso em: 08 ago. 2024.
    • APA

      Gerola, A. P., Wanderlind, E. H., Idrees, M., Sangaletti, P., Zaramello, L., Nome, R. A., et al. (2020). Anion binding to surfactant aggregates: auCl4− in cationic, anionic and zwitterionic micelles. Journal of Molecular Liquids, 314, 1-6 art. 113607. doi:10.1016/j.molliq.2020.113607
    • NLM

      Gerola AP, Wanderlind EH, Idrees M, Sangaletti P, Zaramello L, Nome RA, Silva GT de M, Quina FH, Tachiya M, Nome F, Fiedler HD. Anion binding to surfactant aggregates: auCl4− in cationic, anionic and zwitterionic micelles [Internet]. Journal of Molecular Liquids. 2020 ; 314 1-6 art. 113607.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.113607
    • Vancouver

      Gerola AP, Wanderlind EH, Idrees M, Sangaletti P, Zaramello L, Nome RA, Silva GT de M, Quina FH, Tachiya M, Nome F, Fiedler HD. Anion binding to surfactant aggregates: auCl4− in cationic, anionic and zwitterionic micelles [Internet]. Journal of Molecular Liquids. 2020 ; 314 1-6 art. 113607.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2020.113607
  • Fonte: Journal of Molecular Structure. Unidade: IQ

    Assuntos: DIFRAÇÃO POR RAIOS X, BENZENO, QUÍMICA DE COORDENAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHAN, Ezzat et al. Molecular structure of 1,4-bis(substituted-carbonyl)benzene: a combined experimental and theoretical approach. Journal of Molecular Structure, v. 1205, p. 1-14 art. 127633, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.molstruc.2019.127633. Acesso em: 08 ago. 2024.
    • APA

      Khan, E., Khalid, M., Gul, Z., Shahzad, A., Tahir, M. N., Asif, H. M., et al. (2020). Molecular structure of 1,4-bis(substituted-carbonyl)benzene: a combined experimental and theoretical approach. Journal of Molecular Structure, 1205, 1-14 art. 127633. doi:10.1016/j.molstruc.2019.127633
    • NLM

      Khan E, Khalid M, Gul Z, Shahzad A, Tahir MN, Asif HM, Asim S, Braga AAC. Molecular structure of 1,4-bis(substituted-carbonyl)benzene: a combined experimental and theoretical approach [Internet]. Journal of Molecular Structure. 2020 ; 1205 1-14 art. 127633.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molstruc.2019.127633
    • Vancouver

      Khan E, Khalid M, Gul Z, Shahzad A, Tahir MN, Asif HM, Asim S, Braga AAC. Molecular structure of 1,4-bis(substituted-carbonyl)benzene: a combined experimental and theoretical approach [Internet]. Journal of Molecular Structure. 2020 ; 1205 1-14 art. 127633.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molstruc.2019.127633
  • Fonte: Analytica Chimica Acta. Unidades: EP, IQ

    Assuntos: OURO, BIOMARCADORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REGIART, Daniel Matias Gaston et al. Ultrasensitive microfluidic electrochemical immunosensor based on electrodeposited nanoporous gold for SOX-2 determination. Analytica Chimica Acta, v. 1127, p. 122-130, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.aca.2020.06.037. Acesso em: 08 ago. 2024.
    • APA

      Regiart, D. M. G., Gimenez, A. M., Lopes, A. T., Páez Carreño, M. N., & Bertotti, M. (2020). Ultrasensitive microfluidic electrochemical immunosensor based on electrodeposited nanoporous gold for SOX-2 determination. Analytica Chimica Acta, 1127, 122-130. doi:10.1016/j.aca.2020.06.037
    • NLM

      Regiart DMG, Gimenez AM, Lopes AT, Páez Carreño MN, Bertotti M. Ultrasensitive microfluidic electrochemical immunosensor based on electrodeposited nanoporous gold for SOX-2 determination [Internet]. Analytica Chimica Acta. 2020 ; 1127 122-130.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.aca.2020.06.037
    • Vancouver

      Regiart DMG, Gimenez AM, Lopes AT, Páez Carreño MN, Bertotti M. Ultrasensitive microfluidic electrochemical immunosensor based on electrodeposited nanoporous gold for SOX-2 determination [Internet]. Analytica Chimica Acta. 2020 ; 1127 122-130.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.aca.2020.06.037
  • Fonte: Purinergic Signalling. Unidade: IQ

    Assuntos: CÉLULAS-TRONCO, ADENOSINA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RATAJCZAK, Mariusz Z et al. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling—an update. Purinergic Signalling, v. 16, p. 153–166, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11302-020-09698-y. Acesso em: 08 ago. 2024.
    • APA

      Ratajczak, M. Z., Adamiak, M., Bujko, K., Thapa, A., Pensato, V., Kucia, M., et al. (2020). Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling—an update. Purinergic Signalling, 16, 153–166. doi:10.1007/s11302-020-09698-y
    • NLM

      Ratajczak MZ, Adamiak M, Bujko K, Thapa A, Pensato V, Kucia M, Ratajczak J, Ulrich H. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling—an update [Internet]. Purinergic Signalling. 2020 ; 16 153–166.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11302-020-09698-y
    • Vancouver

      Ratajczak MZ, Adamiak M, Bujko K, Thapa A, Pensato V, Kucia M, Ratajczak J, Ulrich H. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling—an update [Internet]. Purinergic Signalling. 2020 ; 16 153–166.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11302-020-09698-y

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024