Filters : "TOMITA, ARTUR HIDEYUKI" Limpar

Filters



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMÁN, O.; HRUŠÁK, Michael; RODRIGUES, Vinicius de Oliveira; TODORCEVIC, Stevo; TOMITA, Artur Hideyuki. Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, Amsterdam, v. 305, n. artigo 107872, p. 1-24, 2022. Disponível em: < https://doi.org/10.1016/j.topol.2021.107872 > DOI: 10.1016/j.topol.2021.107872.
    • APA

      Guzmán, O., Hrušák, M., Rodrigues, V. de O., Todorcevic, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, 305( artigo 107872), 1-24. doi:10.1016/j.topol.2021.107872
    • NLM

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.Available from: https://doi.org/10.1016/j.topol.2021.107872
    • Vancouver

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.Available from: https://doi.org/10.1016/j.topol.2021.107872
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; BOERO, Ana Carolina; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, Amsterdam, Elsevier, v. 297, n. art. 107703, p. 1-23, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107703 > DOI: 10.1016/j.topol.2021.107703.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, Amsterdam, Elsevier, v. 296, n. art. 107684, p. 1-14, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107684 > DOI: 10.1016/j.topol.2021.107684.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, Amsterdam, Elsevier, v. 294, p. 1-22, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107653 > DOI: 10.1016/j.topol.2021.107653.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S.; TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, Amsterdam, v. 285, n. art. 107380, p. 1-7, 2020. Disponível em: < https://doi.org/10.1016/j.topol.2020.107380 > DOI: 10.1016/j.topol.2020.107380.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, Amsterdam, v. 259, p. 347-364, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.02.040 > DOI: 10.1016/j.topol.2019.02.040.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subjects: HIPERESPAÇO, TOPOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, Warszawa, v. 247, n. 1, p. 99-108, 2019. Disponível em: < http://dx.doi.org/10.4064/fm657-10-2018 > DOI: 10.4064/fm657-10-2018.
    • APA

      Rodrigues, V. de O., & Tomita, A. H. (2019). Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, 247( 1), 99-108. doi:10.4064/fm657-10-2018
    • NLM

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.Available from: http://dx.doi.org/10.4064/fm657-10-2018
    • Vancouver

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.Available from: http://dx.doi.org/10.4064/fm657-10-2018
  • Source: Acta Mathematica Hungarica. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS ABELIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; PEREIRA, Irene Castro; TOMITA, Artur Hideyuki. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter. Acta Mathematica Hungarica, Budapest, v. 159, n. 2, p. 414-428, 2019. Disponível em: < https://doi.org/10.1007/s10474-019-00991-w > DOI: 10.1007/s10474-019-00991-w.
    • APA

      Boero, A. C., Pereira, I. C., & Tomita, A. H. (2019). Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter. Acta Mathematica Hungarica, 159( 2), 414-428. doi:10.1007/s10474-019-00991-w
    • NLM

      Boero AC, Pereira IC, Tomita AH. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter [Internet]. Acta Mathematica Hungarica. 2019 ; 159( 2): 414-428.Available from: https://doi.org/10.1007/s10474-019-00991-w
    • Vancouver

      Boero AC, Pereira IC, Tomita AH. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter [Internet]. Acta Mathematica Hungarica. 2019 ; 159( 2): 414-428.Available from: https://doi.org/10.1007/s10474-019-00991-w
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; BOERO, Ana Carolina; CASTRO-PEREIRA, Irene; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, Amsterdam, v. 267, 2019. Disponível em: < https://doi.org/10.1016/j.topol.2019.106894 > DOI: 10.1016/j.topol.2019.106894.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267Available from: https://doi.org/10.1016/j.topol.2019.106894
  • Source: Journal of Applied Analysis. Unidade: IME

    Subject: MEDIDA E INTEGRAÇÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador; TOMITA, Artur Hideyuki; ORTIZ-CASTILLO, Yasser Ferman. 𝜎-ideals and outer measures on the real line. Journal of Applied Analysis, Berlin, v. 25, n. 1, p. 25-36, 2019. Disponível em: < http://dx.doi.org/10.1515/jaa-2019-0003 > DOI: 10.1515/jaa-2019-0003.
    • APA

      Garcia-Ferreira, S., Tomita, A. H., & Ortiz-Castillo, Y. F. (2019). 𝜎-ideals and outer measures on the real line. Journal of Applied Analysis, 25( 1), 25-36. doi:10.1515/jaa-2019-0003
    • NLM

      Garcia-Ferreira S, Tomita AH, Ortiz-Castillo YF. 𝜎-ideals and outer measures on the real line [Internet]. Journal of Applied Analysis. 2019 ; 25( 1): 25-36.Available from: http://dx.doi.org/10.1515/jaa-2019-0003
    • Vancouver

      Garcia-Ferreira S, Tomita AH, Ortiz-Castillo YF. 𝜎-ideals and outer measures on the real line [Internet]. Journal of Applied Analysis. 2019 ; 25( 1): 25-36.Available from: http://dx.doi.org/10.1515/jaa-2019-0003
  • Source: Tsukuba Journal of Mathematics. Unidade: IME

    Subject: TOPOLOGIA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Yasser F; TOMITA, Artur Hideyuki; YAMAUCHI, Takamitsu. Higson compactifications of Wallman type. Tsukuba Journal of Mathematics, Tsukuba, v. 42, n. 2, p. 233-250, 2018. Disponível em: < http://dx.doi.org/10.21099/tkbjm/1554170423 > DOI: 10.21099/tkbjm/1554170423.
    • APA

      Ortiz-Castillo, Y. F., Tomita, A. H., & Yamauchi, T. (2018). Higson compactifications of Wallman type. Tsukuba Journal of Mathematics, 42( 2), 233-250. doi:10.21099/tkbjm/1554170423
    • NLM

      Ortiz-Castillo YF, Tomita AH, Yamauchi T. Higson compactifications of Wallman type [Internet]. Tsukuba Journal of Mathematics. 2018 ; 42( 2): 233-250.Available from: http://dx.doi.org/10.21099/tkbjm/1554170423
    • Vancouver

      Ortiz-Castillo YF, Tomita AH, Yamauchi T. Higson compactifications of Wallman type [Internet]. Tsukuba Journal of Mathematics. 2018 ; 42( 2): 233-250.Available from: http://dx.doi.org/10.21099/tkbjm/1554170423
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS PSEUDOCOMPACTOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador; TOMITA, Artur Hideyuki. Finite powers of selectively pseudocompact groups. Topology and its Applications, Amsterdam, v. 248, p. 50-58, 2018. Disponível em: < https://doi.org/10.1016/j.topol.2018.08.009 > DOI: 10.1016/j.topol.2018.08.009.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2018). Finite powers of selectively pseudocompact groups. Topology and its Applications, 248, 50-58. doi:10.1016/j.topol.2018.08.009
    • NLM

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.Available from: https://doi.org/10.1016/j.topol.2018.08.009
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.Available from: https://doi.org/10.1016/j.topol.2018.08.009
  • Source: Topology and its Applications. Unidade: IME

    Subjects: HIPERESPAÇO, TOPOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F; RODRIGUES, V. O.; TOMITA, Artur Hideyuki. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω. Topology and its Applications, Amsterdam, v. 246, p. 9-21, 2018. Disponível em: < http://dx.doi.org/10.1016/j.topol.2018.06.014 > DOI: 10.1016/j.topol.2018.06.014.
    • APA

      Ortiz-Castillo, Y. F., Rodrigues, V. O., & Tomita, A. H. (2018). Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω. Topology and its Applications, 246, 9-21. doi:10.1016/j.topol.2018.06.014
    • NLM

      Ortiz-Castillo YF, Rodrigues VO, Tomita AH. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω [Internet]. Topology and its Applications. 2018 ; 246 9-21.Available from: http://dx.doi.org/10.1016/j.topol.2018.06.014
    • Vancouver

      Ortiz-Castillo YF, Rodrigues VO, Tomita AH. Small cardinals and the pseudocompactness of hyperspaces of subspaces of βω [Internet]. Topology and its Applications. 2018 ; 246 9-21.Available from: http://dx.doi.org/10.1016/j.topol.2018.06.014
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subject: TOPOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F.; TOMITA, Artur Hideyuki. Pseudocompactness and resolvability. Fundamenta Mathematicae, Warszawa, v. 241, n. 2, p. 127-142, 2018. Disponível em: < http://dx.doi.org/10.4064/fm215-8-2017 > DOI: 10.4064/fm215-8-2017.
    • APA

      Ortiz-Castillo, Y. F., & Tomita, A. H. (2018). Pseudocompactness and resolvability. Fundamenta Mathematicae, 241( 2), 127-142. doi:10.4064/fm215-8-2017
    • NLM

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.Available from: http://dx.doi.org/10.4064/fm215-8-2017
    • Vancouver

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.Available from: http://dx.doi.org/10.4064/fm215-8-2017
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDERMAN, Arkady G; PESTOV, Vladimir G; TOMITA, Artur Hideyuki. On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, Warsaw, v. 238, p. 79-100, 2017. Disponível em: < https://dx.doi.org/10.4064/fm188-9-2016 > DOI: 10.4064/fm188-9-2016.
    • APA

      Leiderman, A. G., Pestov, V. G., & Tomita, A. H. (2017). On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, 238, 79-100. doi:10.4064/fm188-9-2016
    • NLM

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
    • Vancouver

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
  • Source: Topology and its Applications. Conference title: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; TOMITA, Artur Hideyuki; PEREIRA, Irene Castro. A group topology on the real line that makes its square countably compact but not its cube. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.070.
    • APA

      Boero, A. C., Tomita, A. H., & Pereira, I. C. (2015). A group topology on the real line that makes its square countably compact but not its cube. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.070
    • NLM

      Boero AC, Tomita AH, Pereira IC. A group topology on the real line that makes its square countably compact but not its cube [Internet]. Topology and its Applications. 2015 ; 192 30-57.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.070
    • Vancouver

      Boero AC, Tomita AH, Pereira IC. A group topology on the real line that makes its square countably compact but not its cube [Internet]. Topology and its Applications. 2015 ; 192 30-57.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.070
  • Source: Topology and its Applications. Conference title: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador; TOMITA, Artur Hideyuki. A pseudocompact group which is not strongly pseudocompact. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.076.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2015). A pseudocompact group which is not strongly pseudocompact. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.076
    • NLM

      Garcia-Ferreira S, Tomita AH. A pseudocompact group which is not strongly pseudocompact [Internet]. Topology and its Applications. 2015 ; 192 138–144.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.076
    • Vancouver

      Garcia-Ferreira S, Tomita AH. A pseudocompact group which is not strongly pseudocompact [Internet]. Topology and its Applications. 2015 ; 192 138–144.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.076
  • Source: Topology and its Applications. Conference title: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TKACHENKO, Mikhail G; TOMITA, Artur Hideyuki. Cellularity in subgroups of paratopological groups. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.081.
    • APA

      Tkachenko, M. G., & Tomita, A. H. (2015). Cellularity in subgroups of paratopological groups. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.081
    • NLM

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.081
    • Vancouver

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.081
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS, GRUPOS ABELIANOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact. Topology and its Applications, Amsterdam, 2015. Disponível em: < http://dx.doi.org/10.1016/j.topol.2015.05.060 > DOI: 10.1016/j.topol.2015.05.060.
    • APA

      Tomita, A. H. (2015). A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact. Topology and its Applications. doi:10.1016/j.topol.2015.05.060
    • NLM

      Tomita AH. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact [Internet]. Topology and its Applications. 2015 ;Available from: http://dx.doi.org/10.1016/j.topol.2015.05.060
    • Vancouver

      Tomita AH. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact [Internet]. Topology and its Applications. 2015 ;Available from: http://dx.doi.org/10.1016/j.topol.2015.05.060
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, ANÁLISE FUNCIONAL, BORNOLOGIA, CONJUNTOS DE BAIRE

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAO, Jiling; TOMITA, Artur Hideyuki. Bornologies, topological games and function spaces. Topology and its Applications, Amsterdam, v. 184, p. 16-28, 2015. Disponível em: < http://dx.doi.org/10.1016/j.topol.2015.01.009 > DOI: 10.1016/j.topol.2015.01.009.
    • APA

      Cao, J., & Tomita, A. H. (2015). Bornologies, topological games and function spaces. Topology and its Applications, 184, 16-28. doi:10.1016/j.topol.2015.01.009
    • NLM

      Cao J, Tomita AH. Bornologies, topological games and function spaces [Internet]. Topology and its Applications. 2015 ; 184 16-28.Available from: http://dx.doi.org/10.1016/j.topol.2015.01.009
    • Vancouver

      Cao J, Tomita AH. Bornologies, topological games and function spaces [Internet]. Topology and its Applications. 2015 ; 184 16-28.Available from: http://dx.doi.org/10.1016/j.topol.2015.01.009

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022