Filtros : "POPOV, SERGUEI" Limpar

Filtros



Refine with date range


  • Source: Annals of Probability. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis; POPOV, Serguei Yu; SCHUTZ, Gunter M.; VACHKOVSKAIA, Marina. Quenched invariance principle for the Knudsen stochastic billiard in a Random tube. Annals of Probability, Cleveland, v. 38, n. 3, p. 1019-1061, 2010. Disponível em: < http://dx.doi.org/ 10.1214/09-AOP504 > DOI: 10.1214/09-AOP504.
    • APA

      Comets, F., Popov, S. Y., Schutz, G. M., & Vachkovskaia, M. (2010). Quenched invariance principle for the Knudsen stochastic billiard in a Random tube. Annals of Probability, 38( 3), 1019-1061. doi:10.1214/09-AOP504
    • NLM

      Comets F, Popov SY, Schutz GM, Vachkovskaia M. Quenched invariance principle for the Knudsen stochastic billiard in a Random tube [Internet]. Annals of Probability. 2010 ; 38( 3): 1019-1061.Available from: http://dx.doi.org/ 10.1214/09-AOP504
    • Vancouver

      Comets F, Popov SY, Schutz GM, Vachkovskaia M. Quenched invariance principle for the Knudsen stochastic billiard in a Random tube [Internet]. Annals of Probability. 2010 ; 38( 3): 1019-1061.Available from: http://dx.doi.org/ 10.1214/09-AOP504
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRIBERGH, Alexander; GANTERT, Nina; POPOV, Serguei Yu. On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, New York, v. 147, n. 1-2, p. 43-88, 2010. Disponível em: < https://doi.org/10.1007/s00440-009-0201-2 > DOI: 10.1007/s00440-009-0201-2.
    • APA

      Fribergh, A., Gantert, N., & Popov, S. Y. (2010). On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, 147( 1-2), 43-88. doi:10.1007/s00440-009-0201-2
    • NLM

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.Available from: https://doi.org/10.1007/s00440-009-0201-2
    • Vancouver

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.Available from: https://doi.org/10.1007/s00440-009-0201-2
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GANTERT, Nina; POPOV, Serguei Yu; VACHKOVSKAIA, Marina. Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, Washington, v. 14, n. paper 22, p. 569-593, 2009. Disponível em: < https://doi.org/10.1214/ejp.v14-631 > DOI: 10.1214/ejp.v14-631.
    • APA

      Gantert, N., Popov, S. Y., & Vachkovskaia, M. (2009). Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, 14( paper 22), 569-593. doi:10.1214/ejp.v14-631
    • NLM

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.Available from: https://doi.org/10.1214/ejp.v14-631
    • Vancouver

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.Available from: https://doi.org/10.1214/ejp.v14-631
  • Source: Archive for Rational Mechanics and Analysis. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis; POPOV, Serguei Yu; SCHUTZ, Gunter M.; VACHKOVSKAIA, Marina. Billiards in a General Domain with Random Reflections. Archive for Rational Mechanics and Analysis, Berlin, v. 191, n. 3, p. 497-537, 2009. Disponível em: < https://doi.org/10.1007/s00205-008-0120-x > DOI: 10.1007/s00205-008-0120-x.
    • APA

      Comets, F., Popov, S. Y., Schutz, G. M., & Vachkovskaia, M. (2009). Billiards in a General Domain with Random Reflections. Archive for Rational Mechanics and Analysis, 191( 3), 497-537. doi:10.1007/s00205-008-0120-x
    • NLM

      Comets F, Popov SY, Schutz GM, Vachkovskaia M. Billiards in a General Domain with Random Reflections [Internet]. Archive for Rational Mechanics and Analysis. 2009 ; 191( 3): 497-537.Available from: https://doi.org/10.1007/s00205-008-0120-x
    • Vancouver

      Comets F, Popov SY, Schutz GM, Vachkovskaia M. Billiards in a General Domain with Random Reflections [Internet]. Archive for Rational Mechanics and Analysis. 2009 ; 191( 3): 497-537.Available from: https://doi.org/10.1007/s00205-008-0120-x
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis; POPOV, Serguei Yu; VACHKOVSKAIA, Marina. The number of open paths in an oriented rho-percolation model. Journal of Statistical Physics, New York, v. 131, n. 2, p. 357-379, 2008. Disponível em: < http://dx.doi.org/10.1007/s10955-008-9506-2 > DOI: 10.1007/s10955-008-9506-2.
    • APA

      Comets, F., Popov, S. Y., & Vachkovskaia, M. (2008). The number of open paths in an oriented rho-percolation model. Journal of Statistical Physics, 131( 2), 357-379. doi:10.1007/s10955-008-9506-2
    • NLM

      Comets F, Popov SY, Vachkovskaia M. The number of open paths in an oriented rho-percolation model [Internet]. Journal of Statistical Physics. 2008 ; 131( 2): 357-379.Available from: http://dx.doi.org/10.1007/s10955-008-9506-2
    • Vancouver

      Comets F, Popov SY, Vachkovskaia M. The number of open paths in an oriented rho-percolation model [Internet]. Journal of Statistical Physics. 2008 ; 131( 2): 357-379.Available from: http://dx.doi.org/10.1007/s10955-008-9506-2
  • Source: Annals of Probability. Unidade: IME

    Assunto: MODELOS (ANÁLISE MULTIVARIADA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACPHEE, Lain; MENSHIKOV, Mikhail Vasil'evich; PETRITS, Dimitri; POPOV, Serguei Yu. Polling systemd with parameter regeneration, the general case. Annals of Probability, Beachwood, v. 18, n. 6, p. 2131-2155, 2008. Disponível em: < https://doi.org/10.1214/08-aap519 > DOI: 10.1214/08-aap519.
    • APA

      MacPhee, L., Menshikov, M. V. 'evich, Petrits, D., & Popov, S. Y. (2008). Polling systemd with parameter regeneration, the general case. Annals of Probability, 18( 6), 2131-2155. doi:10.1214/08-aap519
    • NLM

      MacPhee L, Menshikov MV'evich, Petrits D, Popov SY. Polling systemd with parameter regeneration, the general case [Internet]. Annals of Probability. 2008 ; 18( 6): 2131-2155.Available from: https://doi.org/10.1214/08-aap519
    • Vancouver

      MacPhee L, Menshikov MV'evich, Petrits D, Popov SY. Polling systemd with parameter regeneration, the general case [Internet]. Annals of Probability. 2008 ; 18( 6): 2131-2155.Available from: https://doi.org/10.1214/08-aap519
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, M. V.; POPOV, Serguei Yu; VACHKOVSKAIA, A. Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, Amsterdam, v. 117, n. 4, p. 514-525, 2007. Disponível em: < https://doi.org/10.1016/j.spa.2006.09.002 > DOI: 10.1016/j.spa.2006.09.002.
    • APA

      Freire, M. V., Popov, S. Y., & Vachkovskaia, A. (2007). Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, 117( 4), 514-525. doi:10.1016/j.spa.2006.09.002
    • NLM

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.Available from: https://doi.org/10.1016/j.spa.2006.09.002
    • Vancouver

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.Available from: https://doi.org/10.1016/j.spa.2006.09.002
  • Source: Annals of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis; POPOV, Serguei Yu. Multidimensional branching random walks in random environment. Annals of Probability, Ohio, v. 35, n. 1, p. 68-114, 2007. Disponível em: < https://doi.org/10.1214/009117906000000926 > DOI: 10.1214/009117906000000926.
    • APA

      Comets, F., & Popov, S. Y. (2007). Multidimensional branching random walks in random environment. Annals of Probability, 35( 1), 68-114. doi:10.1214/009117906000000926
    • NLM

      Comets F, Popov SY. Multidimensional branching random walks in random environment [Internet]. Annals of Probability. 2007 ; 35( 1): 68-114.Available from: https://doi.org/10.1214/009117906000000926
    • Vancouver

      Comets F, Popov SY. Multidimensional branching random walks in random environment [Internet]. Annals of Probability. 2007 ; 35( 1): 68-114.Available from: https://doi.org/10.1214/009117906000000926
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATZINGER, Heinrich; POPOV, Serguei Yu. Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, Seattle, v. 12, p. 637-660, 2007. Disponível em: < https://doi.org/10.1214/EJP.v12-409 > DOI: 10.1214/EJP.v12-409.
    • APA

      Matzinger, H., & Popov, S. Y. (2007). Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, 12, 637-660. doi:10.1214/EJP.v12-409
    • NLM

      Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.Available from: https://doi.org/10.1214/EJP.v12-409
    • Vancouver

      Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.Available from: https://doi.org/10.1214/EJP.v12-409
  • Source: ALEA. Latin American Journal of Probability and Mathematical Statistics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis; POPOV, Serguei Yu. Shape and local growth for multidimensional branching random walks in random environment. ALEA. Latin American Journal of Probability and Mathematical Statistics, Rio de Janeiro, v. 3, p. 273-299, 2007. Disponível em: < http://alea.impa.br/articles/v3/03-11.pdf >.
    • APA

      Comets, F., & Popov, S. Y. (2007). Shape and local growth for multidimensional branching random walks in random environment. ALEA. Latin American Journal of Probability and Mathematical Statistics, 3, 273-299. Recuperado de http://alea.impa.br/articles/v3/03-11.pdf
    • NLM

      Comets F, Popov SY. Shape and local growth for multidimensional branching random walks in random environment [Internet]. ALEA. Latin American Journal of Probability and Mathematical Statistics. 2007 ; 3 273-299.Available from: http://alea.impa.br/articles/v3/03-11.pdf
    • Vancouver

      Comets F, Popov SY. Shape and local growth for multidimensional branching random walks in random environment [Internet]. ALEA. Latin American Journal of Probability and Mathematical Statistics. 2007 ; 3 273-299.Available from: http://alea.impa.br/articles/v3/03-11.pdf
  • Source: Random Structures & Algorithms. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, ALGORITMOS E ESTRUTURAS DE DADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POPOV, Serguei Yu. Random Bulgarian solitaire. Random Structures & Algorithms, Hoboken, v. 27, n. 3, p. 310-330, 2005. Disponível em: < https://doi.org/10.1002/rsa.20076 > DOI: 10.1002/rsa.20076.
    • APA

      Popov, S. Y. (2005). Random Bulgarian solitaire. Random Structures & Algorithms, 27( 3), 310-330. doi:10.1002/rsa.20076
    • NLM

      Popov SY. Random Bulgarian solitaire [Internet]. Random Structures & Algorithms. 2005 ; 27( 3): 310-330.Available from: https://doi.org/10.1002/rsa.20076
    • Vancouver

      Popov SY. Random Bulgarian solitaire [Internet]. Random Structures & Algorithms. 2005 ; 27( 3): 310-330.Available from: https://doi.org/10.1002/rsa.20076
  • Source: Markov Processes and Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich; PETRITIS, D.; POPOV, Serguei Yu. A note on matrix multiplicative cascades and bindweeds. Markov Processes and Related Fields, Moscow, v. 11, n. 1, p. 37-54, 2005.
    • APA

      Menshikov, M. V. 'evich, Petritis, D., & Popov, S. Y. (2005). A note on matrix multiplicative cascades and bindweeds. Markov Processes and Related Fields, 11( 1), 37-54.
    • NLM

      Menshikov MV'evich, Petritis D, Popov SY. A note on matrix multiplicative cascades and bindweeds. Markov Processes and Related Fields. 2005 ; 11( 1): 37-54.
    • Vancouver

      Menshikov MV'evich, Petritis D, Popov SY. A note on matrix multiplicative cascades and bindweeds. Markov Processes and Related Fields. 2005 ; 11( 1): 37-54.
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBENSZTAYN, Élcio; MACHADO, Fábio Prates; POPOV, Serguei Yu. An improved upper bound for the critical probability of the frog model on homogeneous trees. Journal of Statistical Physics, New York, v. 119, n. 1-2, p. 331-345, 2005. Disponível em: < http://dx.doi.org/10.1007/s10955-004-2051-8 > DOI: 10.1007/s10955-004-2051-8.
    • APA

      Lebensztayn, É., Machado, F. P., & Popov, S. Y. (2005). An improved upper bound for the critical probability of the frog model on homogeneous trees. Journal of Statistical Physics, 119( 1-2), 331-345. doi:10.1007/s10955-004-2051-8
    • NLM

      Lebensztayn É, Machado FP, Popov SY. An improved upper bound for the critical probability of the frog model on homogeneous trees [Internet]. Journal of Statistical Physics. 2005 ; 119( 1-2): 331-345.Available from: http://dx.doi.org/10.1007/s10955-004-2051-8
    • Vancouver

      Lebensztayn É, Machado FP, Popov SY. An improved upper bound for the critical probability of the frog model on homogeneous trees [Internet]. Journal of Statistical Physics. 2005 ; 119( 1-2): 331-345.Available from: http://dx.doi.org/10.1007/s10955-004-2051-8
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KURKOVA, Irina; POPOV, Serguei Yu; VACHKOVSKAIA, Marina. On infection spreading and competition between independent random walks. Electronic Journal of Probability[S.l.], v. 9, p. 293-315, 2004. Disponível em: < https://doi.org/10.1214/EJP.v9-197 > DOI: 10.1214/EJP.v9-197.
    • APA

      Kurkova, I., Popov, S. Y., & Vachkovskaia, M. (2004). On infection spreading and competition between independent random walks. Electronic Journal of Probability, 9, 293-315. doi:10.1214/EJP.v9-197
    • NLM

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.Available from: https://doi.org/10.1214/EJP.v9-197
    • Vancouver

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.Available from: https://doi.org/10.1214/EJP.v9-197
  • Source: ESAIM: Probability and Statistics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis M.; POPOV, Serguei Yu. A note on quenched moderate deviations for Sinai's random walk in random environment. ESAIM: Probability and Statistics[S.l.], v. 8, p. 56-65, 2004. Disponível em: < https://doi.org/10.1051/ps:2004001 > DOI: 10.1051/ps:2004001.
    • APA

      Comets, F. M., & Popov, S. Y. (2004). A note on quenched moderate deviations for Sinai's random walk in random environment. ESAIM: Probability and Statistics, 8, 56-65. doi:10.1051/ps:2004001
    • NLM

      Comets FM, Popov SY. A note on quenched moderate deviations for Sinai's random walk in random environment [Internet]. ESAIM: Probability and Statistics. 2004 ; 8 56-65.Available from: https://doi.org/10.1051/ps:2004001
    • Vancouver

      Comets FM, Popov SY. A note on quenched moderate deviations for Sinai's random walk in random environment [Internet]. ESAIM: Probability and Statistics. 2004 ; 8 56-65.Available from: https://doi.org/10.1051/ps:2004001
  • Source: Markov Processes and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich; POPOV, Serguei Yu; SISKO, Valentin; VACHKOVSKAIA, Marina. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields, Moscow, v. 10, n. 1, p. 137-160, 2004.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., Sisko, V., & Vachkovskaia, M. (2004). On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields, 10( 1), 137-160.
    • NLM

      Menshikov MV'evich, Popov SY, Sisko V, Vachkovskaia M. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields. 2004 ; 10( 1): 137-160.
    • Vancouver

      Menshikov MV'evich, Popov SY, Sisko V, Vachkovskaia M. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields. 2004 ; 10( 1): 137-160.
  • Source: Stochastic Processes and Their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates; POPOV, Serguei Yu. Branching random walk in random environment on trees. Stochastic Processes and Their Applications[S.l.], v. 106, n. 1, p. 95-106, 2003. Disponível em: < https://doi.org/10.1016/s0304-4149(03)00039-5 > DOI: 10.1016/s0304-4149(03)00039-5.
    • APA

      Machado, F. P., & Popov, S. Y. (2003). Branching random walk in random environment on trees. Stochastic Processes and Their Applications, 106( 1), 95-106. doi:10.1016/s0304-4149(03)00039-5
    • NLM

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
    • Vancouver

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis M.; POPOV, Serguei Yu. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields[S.l.], v. 126, n. 4, p. 571-609, 2003. Disponível em: < https://doi.org/10.1007/s00440-003-0273-3 > DOI: 10.1007/s00440-003-0273-3.
    • APA

      Comets, F. M., & Popov, S. Y. (2003). Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields, 126( 4), 571-609. doi:10.1007/s00440-003-0273-3
    • NLM

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.Available from: https://doi.org/10.1007/s00440-003-0273-3
    • Vancouver

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.Available from: https://doi.org/10.1007/s00440-003-0273-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PERCOLAÇÃO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WU, X. Y.; POPOV, Serguei Yu. On AB bond percolation on the square lattice and AB site percolation on its line graph. Journal of Statistical Physics[S.l.], v. 110, n. 1/2, p. 1033-1039, 2003.
    • APA

      Wu, X. Y., & Popov, S. Y. (2003). On AB bond percolation on the square lattice and AB site percolation on its line graph. Journal of Statistical Physics, 110( 1/2), 1033-1039.
    • NLM

      Wu XY, Popov SY. On AB bond percolation on the square lattice and AB site percolation on its line graph. Journal of Statistical Physics. 2003 ; 110( 1/2): 1033-1039.
    • Vancouver

      Wu XY, Popov SY. On AB bond percolation on the square lattice and AB site percolation on its line graph. Journal of Statistical Physics. 2003 ; 110( 1/2): 1033-1039.
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich; POPOV, Serguei Yu; VACHKOVSKAIA, Marina. On a multiscale continuous percolation model with unbounded deffects. Bulletin of the Brazilian Mathematical Society, Heidelberg, Springer, v. 34, n. 3, p. 417-435, 2003. Disponível em: < https://doi.org/10.1007/s00574-003-0022-3 > DOI: 10.1007/s00574-003-0022-3.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2003). On a multiscale continuous percolation model with unbounded deffects. Bulletin of the Brazilian Mathematical Society, 34( 3), 417-435. doi:10.1007/s00574-003-0022-3
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On a multiscale continuous percolation model with unbounded deffects [Internet]. Bulletin of the Brazilian Mathematical Society. 2003 ; 34( 3): 417-435.Available from: https://doi.org/10.1007/s00574-003-0022-3
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On a multiscale continuous percolation model with unbounded deffects [Internet]. Bulletin of the Brazilian Mathematical Society. 2003 ; 34( 3): 417-435.Available from: https://doi.org/10.1007/s00574-003-0022-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021