Filters : "PICCIONE, PAOLO" Limpar

Filters



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri; NARDULLI, Stefano; ACEVEDO, Luis Eduardo Osorio; PICCIONE, Paolo. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint. Nonlinear Analysis, Oxford, v. 220, n. artigo 112851, p. 1-29, 2022. Disponível em: < https://doi.org/10.1016/j.na.2022.112851 > DOI: 10.1016/j.na.2022.112851.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2022). Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint. Nonlinear Analysis, 220( artigo 112851), 1-29. doi:10.1016/j.na.2022.112851
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220( artigo 112851): 1-29.Available from: https://doi.org/10.1016/j.na.2022.112851
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220( artigo 112851): 1-29.Available from: https://doi.org/10.1016/j.na.2022.112851
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÁLISE GLOBAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA RIEMANNIANA, TEORIA DA BIFURCAÇÃO

    Available on 2023-02-17Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; PICCIONE, Paolo. Global bifurcation for a class of nonlinear ODEs. São Paulo Journal of Mathematical Sciences, Heidelberg, 2022. Disponível em: < https://doi.org/10.1007/s40863-022-00290-3 > DOI: 10.1007/s40863-022-00290-3.
    • APA

      Bettiol, R. G., & Piccione, P. (2022). Global bifurcation for a class of nonlinear ODEs. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-022-00290-3
    • NLM

      Bettiol RG, Piccione P. Global bifurcation for a class of nonlinear ODEs [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;Available from: https://doi.org/10.1007/s40863-022-00290-3
    • Vancouver

      Bettiol RG, Piccione P. Global bifurcation for a class of nonlinear ODEs [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;Available from: https://doi.org/10.1007/s40863-022-00290-3
  • Source: The Journal of Geometric Analysis. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; LAURET, Emilio A.; PICCIONE, Paolo. The first eigenvalue of a homogeneous CROSS. The Journal of Geometric Analysis[S.l.], Springer Science and Business Media LLC, v. 32, n. 3, 2022. Disponível em: < https://doi.org/10.1007/s12220-021-00826-7 > DOI: 10.1007/s12220-021-00826-7.
    • APA

      Bettiol, R. G., Lauret, E. A., & Piccione, P. (2022). The first eigenvalue of a homogeneous CROSS. The Journal of Geometric Analysis, 32( 3). doi:10.1007/s12220-021-00826-7
    • NLM

      Bettiol RG, Lauret EA, Piccione P. The first eigenvalue of a homogeneous CROSS [Internet]. The Journal of Geometric Analysis. 2022 ; 32( 3):Available from: https://doi.org/10.1007/s12220-021-00826-7
    • Vancouver

      Bettiol RG, Lauret EA, Piccione P. The first eigenvalue of a homogeneous CROSS [Internet]. The Journal of Geometric Analysis. 2022 ; 32( 3):Available from: https://doi.org/10.1007/s12220-021-00826-7
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: TEORIA DO ESPALHAMENTO, GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO, SUPERFÍCIES MÍNIMAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; LAURET, Emilio A.; PICCIONE, Paolo. Full Laplace spectrum of distance spheres insymmetric spaces of rank one. Bulletin of the London Mathematical Society, London, 2022. Disponível em: < https://doi.org/10.1112/blms.12650 > DOI: 10.1112/blms.12650.
    • APA

      Bettiol, R. G., Lauret, E. A., & Piccione, P. (2022). Full Laplace spectrum of distance spheres insymmetric spaces of rank one. Bulletin of the London Mathematical Society. doi:10.1112/blms.12650
    • NLM

      Bettiol RG, Lauret EA, Piccione P. Full Laplace spectrum of distance spheres insymmetric spaces of rank one [Internet]. Bulletin of the London Mathematical Society. 2022 ;Available from: https://doi.org/10.1112/blms.12650
    • Vancouver

      Bettiol RG, Lauret EA, Piccione P. Full Laplace spectrum of distance spheres insymmetric spaces of rank one [Internet]. Bulletin of the London Mathematical Society. 2022 ;Available from: https://doi.org/10.1112/blms.12650
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: ANÁLISE GLOBAL, GEOMETRIA DIFERENCIAL, GRUPOS TOPOLÓGICOS, GRUPOS DE LIE, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; LAURET, Emilio A.; PICCIONE, Paolo. Full Laplace spectrum of distance spheres insymmetric spaces of rank one. Bulletin of the London Mathematical Society, London, 2022. Disponível em: < https://doi.org/10.1112/blms.12650 > DOI: 10.1112/blms.12650.
    • APA

      Bettiol, R. G., Lauret, E. A., & Piccione, P. (2022). Full Laplace spectrum of distance spheres insymmetric spaces of rank one. Bulletin of the London Mathematical Society. doi:10.1112/blms.12650
    • NLM

      Bettiol RG, Lauret EA, Piccione P. Full Laplace spectrum of distance spheres insymmetric spaces of rank one [Internet]. Bulletin of the London Mathematical Society. 2022 ;Available from: https://doi.org/10.1112/blms.12650
    • Vancouver

      Bettiol RG, Lauret EA, Piccione P. Full Laplace spectrum of distance spheres insymmetric spaces of rank one [Internet]. Bulletin of the London Mathematical Society. 2022 ;Available from: https://doi.org/10.1112/blms.12650
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, MATEMÁTICOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio; PICCIONE, Paolo. Opening note: an homage to Manfredo P. do Carmo. [Editorial]. São Paulo Journal of Mathematical Sciences[S.l: s.n.], 2021.Disponível em: DOI: 10.1007/s40863-020-00194-0.
    • APA

      Gorodski, C., & Piccione, P. (2021). Opening note: an homage to Manfredo P. do Carmo. [Editorial]. São Paulo Journal of Mathematical Sciences. Heidelberg. doi:10.1007/s40863-020-00194-0
    • NLM

      Gorodski C, Piccione P. Opening note: an homage to Manfredo P. do Carmo. [Editorial] [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 1): 1-2.Available from: https://doi.org/10.1007/s40863-020-00194-0
    • Vancouver

      Gorodski C, Piccione P. Opening note: an homage to Manfredo P. do Carmo. [Editorial] [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 1): 1-2.Available from: https://doi.org/10.1007/s40863-020-00194-0
  • Source: International Mathematics Research Notices. Unidade: IME

    Subjects: GEOMETRIA RIEMANNIANA, TEORIA DA BIFURCAÇÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; PICCIONE, Paolo; SIRE, Yannick. Nonuniqueness of Conformal Metrics With Constant Q-curvature. International Mathematics Research Notices, Cary, Oxford University Press (OUP), v. 2021, n. 9, p. 6967-6992, 2021. Disponível em: < https://doi.org/10.1093/imrn/rnz045 > DOI: 10.1093/imrn/rnz045.
    • APA

      Bettiol, R. G., Piccione, P., & Sire, Y. (2021). Nonuniqueness of Conformal Metrics With Constant Q-curvature. International Mathematics Research Notices, 2021( 9), 6967-6992. doi:10.1093/imrn/rnz045
    • NLM

      Bettiol RG, Piccione P, Sire Y. Nonuniqueness of Conformal Metrics With Constant Q-curvature [Internet]. International Mathematics Research Notices. 2021 ; 2021( 9): 6967-6992.Available from: https://doi.org/10.1093/imrn/rnz045
    • Vancouver

      Bettiol RG, Piccione P, Sire Y. Nonuniqueness of Conformal Metrics With Constant Q-curvature [Internet]. International Mathematics Research Notices. 2021 ; 2021( 9): 6967-6992.Available from: https://doi.org/10.1093/imrn/rnz045
  • Source: Notices of the American Mathematical Society. Unidade: IME

    Subject: GEOMETRIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G.; PICCIONE, Paolo. Instability and bifurcation. Notices of the American Mathematical Society, Providence, v. 67, n. 11, p. 1679-1691, 2020. Disponível em: < https://doi.org/10.1090/noti2185 > DOI: 10.1090/noti2185.
    • APA

      Bettiol, R. G., & Piccione, P. (2020). Instability and bifurcation. Notices of the American Mathematical Society, 67( 11), 1679-1691. doi:10.1090/noti2185
    • NLM

      Bettiol RG, Piccione P. Instability and bifurcation [Internet]. Notices of the American Mathematical Society. 2020 ; 67( 11): 1679-1691.Available from: https://doi.org/10.1090/noti2185
    • Vancouver

      Bettiol RG, Piccione P. Instability and bifurcation [Internet]. Notices of the American Mathematical Society. 2020 ; 67( 11): 1679-1691.Available from: https://doi.org/10.1090/noti2185
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, PROBLEMAS VARIACIONAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri; NARDULLI, Stefano; PICCIONE, Paolo. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, Heidelberg, v. 59, n. 2, 2020. Disponível em: < https://doi.org/10.1007/s00526-020-1724-8 > DOI: 10.1007/s00526-020-1724-8.
    • APA

      Benci, V., Nardulli, S., & Piccione, P. (2020). Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, 59( 2). doi:10.1007/s00526-020-1724-8
    • NLM

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):Available from: https://doi.org/10.1007/s00526-020-1724-8
    • Vancouver

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):Available from: https://doi.org/10.1007/s00526-020-1724-8
  • Source: Revista Matemática Iberoamericana. Unidade: IME

    Subject: GEOMETRIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DERDZINSKI, Andrzej; PICCIONE, Paolo. Kähler manifolds with geodesic holomorphic gradients. Revista Matemática Iberoamericana, Zürich, v. 36, n. 5, p. 1489-1526, 2020. Disponível em: < https://doi.org/10.4171/RMI/1173 > DOI: 10.4171/RMI/1173.
    • APA

      Derdzinski, A., & Piccione, P. (2020). Kähler manifolds with geodesic holomorphic gradients. Revista Matemática Iberoamericana, 36( 5), 1489-1526. doi:10.4171/RMI/1173
    • NLM

      Derdzinski A, Piccione P. Kähler manifolds with geodesic holomorphic gradients [Internet]. Revista Matemática Iberoamericana. 2020 ; 36( 5): 1489-1526.Available from: https://doi.org/10.4171/RMI/1173
    • Vancouver

      Derdzinski A, Piccione P. Kähler manifolds with geodesic holomorphic gradients [Internet]. Revista Matemática Iberoamericana. 2020 ; 36( 5): 1489-1526.Available from: https://doi.org/10.4171/RMI/1173
  • Source: Geometry of submanifolds. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA RIEMANNIANA, VARIEDADES RIEMANNIANAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DERDZINSKI, Andrzej; PICCIONE, Paolo. Maximally-warped metrics with harmonic curvature. In: Geometry of submanifolds[S.l: s.n.], 2020.
    • APA

      Derdzinski, A., & Piccione, P. (2020). Maximally-warped metrics with harmonic curvature. In Geometry of submanifolds. Providence: AMS.
    • NLM

      Derdzinski A, Piccione P. Maximally-warped metrics with harmonic curvature. In: Geometry of submanifolds. Providence: AMS; 2020.
    • Vancouver

      Derdzinski A, Piccione P. Maximally-warped metrics with harmonic curvature. In: Geometry of submanifolds. Providence: AMS; 2020.
  • Unidade: IME

    Subject: MATEMÁTICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio; PICCIONE, Paolo. São Paulo Journal of Mathematical Sciences. [S.l: s.n.], 2020.Disponível em: .
    • APA

      Gorodski, C., & Piccione, P. (2020). São Paulo Journal of Mathematical Sciences. Heidelberg. Recuperado de https://link.springer.com/journal/40863/volumes-and-issues/15-1
    • NLM

      Gorodski C, Piccione P. São Paulo Journal of Mathematical Sciences [Internet]. 2020 ; 15( 1):Available from: https://link.springer.com/journal/40863/volumes-and-issues/15-1
    • Vancouver

      Gorodski C, Piccione P. São Paulo Journal of Mathematical Sciences [Internet]. 2020 ; 15( 1):Available from: https://link.springer.com/journal/40863/volumes-and-issues/15-1
  • Conference title: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, SUPERFÍCIES MÍNIMAS

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo. Solutions of the Yamabe problem on noncompact manifolds via squeezing. Anais.. Rio de Janeiro: Impa, 2019.Disponível em: .
    • APA

      Piccione, P. (2019). Solutions of the Yamabe problem on noncompact manifolds via squeezing. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Piccione P. Solutions of the Yamabe problem on noncompact manifolds via squeezing [Internet]. 2019 ;Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Piccione P. Solutions of the Yamabe problem on noncompact manifolds via squeezing [Internet]. 2019 ;Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • Source: Applied Mathematics & Optimization. Unidade: IME

    Subject: VARIEDADES RIEMANNIANAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOT, C. A; CAVALCANTI, M. M; DOMINGOS CAVALCANTI, V. N; PICCIONE, Paolo. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization[S.l.], v. 78, n. 2, p. 219–265, 2018. Disponível em: < http://dx.doi.org/10.1007/s00245-017-9405-5 > DOI: 10.1007/s00245-017-9405-5.
    • APA

      Bortot, C. A., Cavalcanti, M. M., Domingos Cavalcanti, V. N., & Piccione, P. (2018). Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization, 78( 2), 219–265. doi:10.1007/s00245-017-9405-5
    • NLM

      Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5
    • Vancouver

      Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5
  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL CONFORME, GEOMETRIA RIEMANNIANA, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini; PICCIONE, Paolo. Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, Chartres, v. 68, n. 2, p. 589-609, 2018. Disponível em: < http://dx.doi.org/10.5802/aif.3172 > DOI: 10.5802/aif.3172.
    • APA

      Bettiol, R. G., & Piccione, P. (2018). Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, 68( 2), 589-609. doi:10.5802/aif.3172
    • NLM

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.Available from: http://dx.doi.org/10.5802/aif.3172
    • Vancouver

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.Available from: http://dx.doi.org/10.5802/aif.3172
  • Source: Annali di Matematica Pura ed Applicata. Unidade: IME

    Subjects: SUBGRUPOS DISCRETOS, GRUPOS DE LIE, GEOMETRIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini; DERDZINSKI, Andrzej; PICCIONE, Paolo. Teichmüller theory and collapse of flat manifolds. Annali di Matematica Pura ed Applicata, Heidelberg, v. 197, n. 4, p. 1247-1268, 2018. Disponível em: < http://dx.doi.org/10.1007/s10231-017-0723-7 > DOI: 10.1007/s10231-017-0723-7.
    • APA

      Bettiol, R. G., Derdzinski, A., & Piccione, P. (2018). Teichmüller theory and collapse of flat manifolds. Annali di Matematica Pura ed Applicata, 197( 4), 1247-1268. doi:10.1007/s10231-017-0723-7
    • NLM

      Bettiol RG, Derdzinski A, Piccione P. Teichmüller theory and collapse of flat manifolds [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1247-1268.Available from: http://dx.doi.org/10.1007/s10231-017-0723-7
    • Vancouver

      Bettiol RG, Derdzinski A, Piccione P. Teichmüller theory and collapse of flat manifolds [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1247-1268.Available from: http://dx.doi.org/10.1007/s10231-017-0723-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto; GIANNONI, Fábio; PICCIONE, Paolo. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, Berlim, v. 57, n. 5, p. 1-26, 2018. Disponível em: < http://dx.doi.org/10.1007/s00526-018-1394-y > DOI: 10.1007/s00526-018-1394-y.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, 57( 5), 1-26. doi:10.1007/s00526-018-1394-y
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.Available from: http://dx.doi.org/10.1007/s00526-018-1394-y
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.Available from: http://dx.doi.org/10.1007/s00526-018-1394-y
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: RELATIVIDADE (GEOMETRIA DIFERENCIAL), GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto; GIANNONI, Fábio; PICCIONE, Paolo. A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, Oxford, v. 168, p. 198-221, 2018. Disponível em: < http://dx.doi.org/10.1016/j.na.2017.11.014 > DOI: 10.1016/j.na.2017.11.014.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, 168, 198-221. doi:10.1016/j.na.2017.11.014
    • NLM

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.Available from: http://dx.doi.org/10.1016/j.na.2017.11.014
    • Vancouver

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.Available from: http://dx.doi.org/10.1016/j.na.2017.11.014
  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki; PICCIONE, Paolo; SHODA, Toshihiro. On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, Saint-Martin-d'Heres, v. 68 n. 6, p. 2743-2778, 2018. Disponível em: < https://doi.org/10.5802/aif.3222 > DOI: 10.5802/aif.3222.
    • APA

      Koiso, M., Piccione, P., & Shoda, T. (2018). On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, 68 n. 6, 2743-2778. doi:10.5802/aif.3222
    • NLM

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.Available from: https://doi.org/10.5802/aif.3222
    • Vancouver

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.Available from: https://doi.org/10.5802/aif.3222
  • Source: Topics in modern differential geometry. Unidade: IME

    Subject: SISTEMAS DINÂMICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto; PICCIONE, Paolo. Periodic trajectories of dynamical systems having a one-parameter group of symmetries. In: Topics in modern differential geometry[S.l: s.n.], 2017.Disponível em: DOI: 10.2991%2F978-94-6239-240-3_2.
    • APA

      Giambó, R., & Piccione, P. (2017). Periodic trajectories of dynamical systems having a one-parameter group of symmetries. In Topics in modern differential geometry. Paris: Atlantis Press. doi:10.2991%2F978-94-6239-240-3_2
    • NLM

      Giambó R, Piccione P. Periodic trajectories of dynamical systems having a one-parameter group of symmetries [Internet]. In: Topics in modern differential geometry. Paris: Atlantis Press; 2017. Available from: http://dx.doi.org/10.2991%2F978-94-6239-240-3_2
    • Vancouver

      Giambó R, Piccione P. Periodic trajectories of dynamical systems having a one-parameter group of symmetries [Internet]. In: Topics in modern differential geometry. Paris: Atlantis Press; 2017. Available from: http://dx.doi.org/10.2991%2F978-94-6239-240-3_2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022