Filtros : "GONCALVES, DACIBERG LIMA" Limpar

Filtros



Refine with date range


  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLIGERI, Paolo; GONÇALVES, Daciberg Lima; GUASCHI, John. Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge, Cambridge University Press (CUP), 2021. Disponível em: < https://doi.org/10.1017/S0305004121000244 > DOI: 10.1017/S0305004121000244.
    • APA

      Belligeri, P., Gonçalves, D. L., & Guaschi, J. (2021). Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society. doi:10.1017/S0305004121000244
    • NLM

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ;Available from: https://doi.org/10.1017/S0305004121000244
    • Vancouver

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ;Available from: https://doi.org/10.1017/S0305004121000244
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Disponível em 2022-12-30Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek; GONÇALVES, Daciberg Lima; WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, Amsterdam, v. 293, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107567 > DOI: 10.1016/j.topol.2020.107567.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Disponível em 2022-06-05Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANKARAN, Parameswaran; WONG, Peter. Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, Amsterdam, v. 293, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107568 > DOI: 10.1016/j.topol.2020.107568.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2021). Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107568
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107568
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107568
  • Source: Journal of Group Theory. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel; GONÇALVES, Daciberg Lima. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups. Journal of Group Theory, New York, v. 23, n. 3, p. 545-562, 2020. Disponível em: < http://dx.doi.org/10.1515/jgth-2018-0182 > DOI: 10.1515/jgth-2018-0182.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2020). The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups. Journal of Group Theory, 23( 3), 545-562. doi:10.1515/jgth-2018-0182
    • NLM

      Dekimpe K, Gonçalves DL. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups [Internet]. Journal of Group Theory. 2020 ; 23( 3): 545-562.Available from: http://dx.doi.org/10.1515/jgth-2018-0182
    • Vancouver

      Dekimpe K, Gonçalves DL. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups [Internet]. Journal of Group Theory. 2020 ; 23( 3): 545-562.Available from: http://dx.doi.org/10.1515/jgth-2018-0182
  • Source: Chebyshevskii Sbornik. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA DIFERENCIAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; WONG, Peter; XUEZHI , Zhao. Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, Tula, v. 21, n. 2, p. 94-108, 2020. Disponível em: < https://doi.org/10.22405/2226-8383-2020-21-2-94-108 > DOI: 10.22405/2226-8383-2020-21-2-94-108.
    • APA

      Gonçalves, D. L., Wong, P., & Xuezhi , Z. (2020). Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, 21( 2), 94-108. doi:10.22405/2226-8383-2020-21-2-94-108
    • NLM

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
    • Vancouver

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANKARAN, Parameswaran; WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, New York, v. 48, n. 9, p. 3916-3921, 2020. Disponível em: < http://dx.doi.org/10.1080/00927872.2020.1751848 > DOI: 10.1080/00927872.2020.1751848.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, Cham, v. 21, n. 2, p. 1-29, 2019. Disponível em: < http://dx.doi.org/10.1007/s11784-019-0693-z > DOI: 10.1007/s11784-019-0693-z.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
  • Source: Acta Mathematica Sinica, English Series. Unidade: IME

    Subjects: TEOREMA DO PONTO FIXO, TOPOLOGIA ALGÉBRICA, GRUPOS NILPOTENTES, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; WONG, Peter. Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, Berlin, v. 35, n. 2, p. 239-244, 2019. Disponível em: < http://dx.doi.org/10.1007/s10114-018-7315-3 > DOI: 10.1007/s10114-018-7315-3.
    • APA

      Gonçalves, D. L., & Wong, P. (2019). Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, 35( 2), 239-244. doi:10.1007/s10114-018-7315-3
    • NLM

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10114-018-7315-3
    • Vancouver

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10114-018-7315-3
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANTOS, Anderson Paião dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, Secaucus, v. 50, n. 3, p. 771-786, 2019. Disponível em: < http://dx.doi.org/10.1007/s00574-018-0098-4 > DOI: 10.1007/s00574-018-0098-4.
    • APA

      Gonçalves, D. L., & Santos, A. P. dos. (2019). Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, 50( 3), 771-786. doi:10.1007/s00574-018-0098-4
    • NLM

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.Available from: http://dx.doi.org/10.1007/s00574-018-0098-4
    • Vancouver

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.Available from: http://dx.doi.org/10.1007/s00574-018-0098-4
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, TEORIA DOS GRUPOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; NASYBULLOV, Timur. Explicit solutions of certain orientable quadratic equations in free groups. International Journal of Algebra and Computation, Singapore, v. 29, n. 08, p. 1451-1466, 2019. Disponível em: < http://dx.doi.org/10.1142/s0218196719500589 > DOI: 10.1142/s0218196719500589.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). Explicit solutions of certain orientable quadratic equations in free groups. International Journal of Algebra and Computation, 29( 08), 1451-1466. doi:10.1142/s0218196719500589
    • NLM

      Gonçalves DL, Nasybullov T. Explicit solutions of certain orientable quadratic equations in free groups [Internet]. International Journal of Algebra and Computation. 2019 ; 29( 08): 1451-1466.Available from: http://dx.doi.org/10.1142/s0218196719500589
    • Vancouver

      Gonçalves DL, Nasybullov T. Explicit solutions of certain orientable quadratic equations in free groups [Internet]. International Journal of Algebra and Computation. 2019 ; 29( 08): 1451-1466.Available from: http://dx.doi.org/10.1142/s0218196719500589
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; OCAMPO, Oscar. Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, New York, v. 524, p. 160-186, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2019.01.010 > DOI: 10.1016/j.jalgebra.2019.01.010.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2019). Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, 524, 160-186. doi:10.1016/j.jalgebra.2019.01.010
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.01.010
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.01.010
  • Source: Communications in Algebra. Unidade: IME

    Subjects: GRUPOS FINITOS ABSTRATOS, GRUPOS NILPOTENTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; NASYBULLOV, Timur. On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, New York, v. 47, n. 3, p. 930-944, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1498873 > DOI: 10.1080/00927872.2018.1498873.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, 47( 3), 930-944. doi:10.1080/00927872.2018.1498873
    • NLM

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
    • Vancouver

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
  • Source: Proceedings: algebraic topology and related topics. Conference titles: East Asian Conference on Algebraic Topology - EACAT. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, GRUPOS DE WHITEHEAD

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek; GONÇALVES, Daciberg Lima; PETER WONG,. Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. Anais.. Singapore: Birkhäuser, 2019.Disponível em: DOI: 10.1007/978-981-13-5742-8_7.
    • APA

      Golasiński, M., Gonçalves, D. L., & Peter Wong,. (2019). Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. In Proceedings: algebraic topology and related topics. Singapore: Birkhäuser. doi:10.1007/978-981-13-5742-8_7
    • NLM

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;Available from: https://doi.org/10.1007/978-981-13-5742-8_7
    • Vancouver

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;Available from: https://doi.org/10.1007/978-981-13-5742-8_7
  • Source: Geometriae Dedicata. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANKARAN, Parameswaran. Twisted conjugacy in PL-homeomorphism groups of the circle. Geometriae Dedicata, Berlin, v. 202, n. 1, p. 311-320, 2019. Disponível em: < http://dx.doi.org/10.1007/s10711-018-0414-6 > DOI: 10.1007/s10711-018-0414-6.
    • APA

      Gonçalves, D. L., & Sankaran, P. (2019). Twisted conjugacy in PL-homeomorphism groups of the circle. Geometriae Dedicata, 202( 1), 311-320. doi:10.1007/s10711-018-0414-6
    • NLM

      Gonçalves DL, Sankaran P. Twisted conjugacy in PL-homeomorphism groups of the circle [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 311-320.Available from: http://dx.doi.org/10.1007/s10711-018-0414-6
    • Vancouver

      Gonçalves DL, Sankaran P. Twisted conjugacy in PL-homeomorphism groups of the circle [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 311-320.Available from: http://dx.doi.org/10.1007/s10711-018-0414-6
  • Source: Indagationes Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, Amsterdam, v. 29, n. 1, p. 91-124, 2018. Disponível em: < https://dx.doi.org/10.1016/j.indag.2017.03.003 > DOI: 10.1016/j.indag.2017.03.003.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2018). Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, 29( 1), 91-124. doi:10.1016/j.indag.2017.03.003
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.Available from: https://dx.doi.org/10.1016/j.indag.2017.03.003
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.Available from: https://dx.doi.org/10.1016/j.indag.2017.03.003
  • Source: Bulletin of the Belgian Mathematical Society. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; KELLY, M. R. Fixed point index bounds for self-maps on closed surfaces. Bulletin of the Belgian Mathematical Society, Brussels, v. 24, n. 4, p. 673-688, 2018. Disponível em: < https://projecteuclid.org/download/pdf_1/euclid.bbms/1515035016 >.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2018). Fixed point index bounds for self-maps on closed surfaces. Bulletin of the Belgian Mathematical Society, 24( 4), 673-688. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.bbms/1515035016
    • NLM

      Gonçalves DL, Kelly MR. Fixed point index bounds for self-maps on closed surfaces [Internet]. Bulletin of the Belgian Mathematical Society. 2018 ; 24( 4): 673-688.Available from: https://projecteuclid.org/download/pdf_1/euclid.bbms/1515035016
    • Vancouver

      Gonçalves DL, Kelly MR. Fixed point index bounds for self-maps on closed surfaces [Internet]. Bulletin of the Belgian Mathematical Society. 2018 ; 24( 4): 673-688.Available from: https://projecteuclid.org/download/pdf_1/euclid.bbms/1515035016
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: GRUPOS DE TRANSFORMAÇÃO, GRUPOS FINITOS, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek; GONÇALVES, Daciberg Lima; JIMENEZ, Rolando. Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, Cambridge, v. 61, n. 2, p. 305-327, 2018. Disponível em: < http://dx.doi.org/10.1017/s0013091517000207 > DOI: 10.1017/s0013091517000207.
    • APA

      Golasinski, M., Gonçalves, D. L., & Jimenez, R. (2018). Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, 61( 2), 305-327. doi:10.1017/s0013091517000207
    • NLM

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.Available from: http://dx.doi.org/10.1017/s0013091517000207
    • Vancouver

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.Available from: http://dx.doi.org/10.1017/s0013091517000207
  • Source: Journal of Knot Theory and Its Ramifications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEDOYA, Natalia Andrea Viana; GONÇALVES, Daciberg Lima; KUDRYAVTSEVA, Elena A. Indecomposable branched coverings over the projective plane by surfaces M with χ(M) ≤ 0. Journal of Knot Theory and Its Ramifications, Singapore, v. 27, n. 5, p. 1850030-1-1850030-23, 2018. Disponível em: < http://dx.doi.org/10.1142/s021821651850030x > DOI: 10.1142/s021821651850030x.
    • APA

      Bedoya, N. A. V., Gonçalves, D. L., & Kudryavtseva, E. A. (2018). Indecomposable branched coverings over the projective plane by surfaces M with χ(M) ≤ 0. Journal of Knot Theory and Its Ramifications, 27( 5), 1850030-1-1850030-23. doi:10.1142/s021821651850030x
    • NLM

      Bedoya NAV, Gonçalves DL, Kudryavtseva EA. Indecomposable branched coverings over the projective plane by surfaces M with χ(M) ≤ 0 [Internet]. Journal of Knot Theory and Its Ramifications. 2018 ; 27( 5): 1850030-1-1850030-23.Available from: http://dx.doi.org/10.1142/s021821651850030x
    • Vancouver

      Bedoya NAV, Gonçalves DL, Kudryavtseva EA. Indecomposable branched coverings over the projective plane by surfaces M with χ(M) ≤ 0 [Internet]. Journal of Knot Theory and Its Ramifications. 2018 ; 27( 5): 1850030-1-1850030-23.Available from: http://dx.doi.org/10.1142/s021821651850030x
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: COHOMOLOGIA DE GRUPOS, GRUPO FUNDAMENTAL, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; MARTINS, Sérgio Tadao. The cohomology ring of the sapphires that admit the Sol geometry. International Journal of Algebra and Computation, Singapore, v. 28, n. 3, p. 365-380, 2018. Disponível em: < http://dx.doi.org/10.1142/s0218196718500170 > DOI: 10.1142/s0218196718500170.
    • APA

      Gonçalves, D. L., & Martins, S. T. (2018). The cohomology ring of the sapphires that admit the Sol geometry. International Journal of Algebra and Computation, 28( 3), 365-380. doi:10.1142/s0218196718500170
    • NLM

      Gonçalves DL, Martins ST. The cohomology ring of the sapphires that admit the Sol geometry [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 3): 365-380.Available from: http://dx.doi.org/10.1142/s0218196718500170
    • Vancouver

      Gonçalves DL, Martins ST. The cohomology ring of the sapphires that admit the Sol geometry [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 3): 365-380.Available from: http://dx.doi.org/10.1142/s0218196718500170
  • Source: Journal of Homotopy and Related Structures. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek; GONÇALVES, Daciberg Lima; WONG, Peter. On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, Heidelberg, v. 12, n. 3, p. 707-726, 2017. Disponível em: < http://dx.doi.org/10.1007%2Fs40062-016-0145-z > DOI: 10.1007%2Fs40062-016-0145-z.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. (2017). On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, 12( 3), 707-726. doi:10.1007%2Fs40062-016-0145-z
    • NLM

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.Available from: http://dx.doi.org/10.1007%2Fs40062-016-0145-z
    • Vancouver

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.Available from: http://dx.doi.org/10.1007%2Fs40062-016-0145-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021