Filters : "GALEGO, ELOI MEDINA" Limpar

Filters



Refine with date range


  • In: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: Análise Funcional, Espaços De Banach

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CÔRTES, Vinícius Morelli; GALEGO, Elói Medina; SAMUEL, Christian. Copies of c0(τ) spaces in projective tensor products. Proceedings of the American Mathematical Society, Providence, American Mathematical Society (AMS), v. 148, p. 4305-4318, 2020. Disponível em: < http://dx.doi.org/10.1090/proc/15064 > DOI: 10.1090/proc/15064.
    • APA

      Côrtes, V. M., Galego, E. M., & Samuel, C. (2020). Copies of c0(τ) spaces in projective tensor products. Proceedings of the American Mathematical Society, 148, 4305-4318. doi:10.1090/proc/15064
    • NLM

      Côrtes VM, Galego EM, Samuel C. Copies of c0(τ) spaces in projective tensor products [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148 4305-4318.Available from: http://dx.doi.org/10.1090/proc/15064
    • Vancouver

      Côrtes VM, Galego EM, Samuel C. Copies of c0(τ) spaces in projective tensor products [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148 4305-4318.Available from: http://dx.doi.org/10.1090/proc/15064
  • In: Bulletin des Sciences Mathématiques. Unidade: IME

    Subjects: Espaços De Banach, Espaços Vetoriais

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORTES, Vinícius Morelli; GALEGO, Elói Medina. When does C(K,X) contain a complemented copy of c0(Γ) if X does? Bulletin des Sciences Mathématiques, Paris, Elsevier, v. 159, n. 1-13, 2020. Disponível em: < http://dx.doi.org/10.1016/j.bulsci.2020.102839 > DOI: 10.1016/j.bulsci.2020.102839.
    • APA

      Cortes, V. M., & Galego, E. M. (2020). When does C(K,X) contain a complemented copy of c0(Γ) if X does? Bulletin des Sciences Mathématiques, 159( 1-13). doi:10.1016/j.bulsci.2020.102839
    • NLM

      Cortes VM, Galego EM. When does C(K,X) contain a complemented copy of c0(Γ) if X does? [Internet]. Bulletin des Sciences Mathématiques. 2020 ; 159( 1-13):Available from: http://dx.doi.org/10.1016/j.bulsci.2020.102839
    • Vancouver

      Cortes VM, Galego EM. When does C(K,X) contain a complemented copy of c0(Γ) if X does? [Internet]. Bulletin des Sciences Mathématiques. 2020 ; 159( 1-13):Available from: http://dx.doi.org/10.1016/j.bulsci.2020.102839
  • In: Proceedings of the American Mathematical Society. Unidades: IME, ICMC

    Subjects: Análise Funcional

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Elói Medina; SILVA, André Luis Porto da. Nonlinear embeddings of spaces of continuous functions. Proceedings of the American Mathematical Society, Menasha, AMS, v. 148, n. 4, p. 1555-1566, 2020. Disponível em: < http://dx.doi.org/10.1090/proc/14798 > DOI: 10.1090/proc/14798.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2020). Nonlinear embeddings of spaces of continuous functions. Proceedings of the American Mathematical Society, 148( 4), 1555-1566. doi:10.1090/proc/14798
    • NLM

      Galego EM, Silva ALP da. Nonlinear embeddings of spaces of continuous functions [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 4): 1555-1566.Available from: http://dx.doi.org/10.1090/proc/14798
    • Vancouver

      Galego EM, Silva ALP da. Nonlinear embeddings of spaces of continuous functions [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 4): 1555-1566.Available from: http://dx.doi.org/10.1090/proc/14798
  • In: Mathematische Nachrichten. Unidade: IME

    Subjects: Espaços De Banach

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SILVA, André Luis Porto da. Isomorphisms of 𝑪𝟎(𝑲,𝑿) spaces with large distortion. Mathematische Nachrichten, Berlin, Wiley, v. 292, n. 5, p. 996-1007, 2019. Disponível em: < http://dx.doi.org/10.1002/mana.201800038 > DOI: 10.1002/mana.201800038.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2019). Isomorphisms of 𝑪𝟎(𝑲,𝑿) spaces with large distortion. Mathematische Nachrichten, 292( 5), 996-1007. doi:10.1002/mana.201800038
    • NLM

      Galego EM, Silva ALP da. Isomorphisms of 𝑪𝟎(𝑲,𝑿) spaces with large distortion [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 996-1007.Available from: http://dx.doi.org/10.1002/mana.201800038
    • Vancouver

      Galego EM, Silva ALP da. Isomorphisms of 𝑪𝟎(𝑲,𝑿) spaces with large distortion [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 996-1007.Available from: http://dx.doi.org/10.1002/mana.201800038
  • In: Israel Journal of Mathematics. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Elói Medina; SILVA, André Luis Porto da. A solution to the Cambern problem for finite-dimensional Hilbert spaces. Israel Journal of Mathematics, Jerusalem, Springer, v. 231, n. 1, p. 419-436, 2019. Disponível em: < http://dx.doi.org/10.1007/s11856-019-1858-6 > DOI: 10.1007/s11856-019-1858-6.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2019). A solution to the Cambern problem for finite-dimensional Hilbert spaces. Israel Journal of Mathematics, 231( 1), 419-436. doi:10.1007/s11856-019-1858-6
    • NLM

      Galego EM, Silva ALP da. A solution to the Cambern problem for finite-dimensional Hilbert spaces [Internet]. Israel Journal of Mathematics. 2019 ; 231( 1): 419-436.Available from: http://dx.doi.org/10.1007/s11856-019-1858-6
    • Vancouver

      Galego EM, Silva ALP da. A solution to the Cambern problem for finite-dimensional Hilbert spaces [Internet]. Israel Journal of Mathematics. 2019 ; 231( 1): 419-436.Available from: http://dx.doi.org/10.1007/s11856-019-1858-6
  • In: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: Espaços De Banach

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SILVA, André Luis Porto da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K. Proceedings of the American Mathematical Society, Menasha, American Mathematical Society (AMS), v. 147, n. 8, p. 3455-3470, 2019. Disponível em: < http://dx.doi.org/10.1090/proc/14498 > DOI: 10.1090/proc/14498.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2019). Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K. Proceedings of the American Mathematical Society, 147( 8), 3455-3470. doi:10.1090/proc/14498
    • NLM

      Galego EM, Silva ALP da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 8): 3455-3470.Available from: http://dx.doi.org/10.1090/proc/14498
    • Vancouver

      Galego EM, Silva ALP da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 8): 3455-3470.Available from: http://dx.doi.org/10.1090/proc/14498
  • In: Mathematische Nachrichten. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORTES, Vinícius Morelli; GALEGO, Elói Medina; SAMUEL, Christian. When is c0(τ) complemented in tensor products of ℓp(I)? Mathematische Nachrichten, Weinheim, Wiley-VCH, v. 292, n. 5, p. 1089-1105, 2019. Disponível em: < https://doi.org/10.1002/mana.201700348 > DOI: 10.1002/mana.201700348.
    • APA

      Cortes, V. M., Galego, E. M., & Samuel, C. (2019). When is c0(τ) complemented in tensor products of ℓp(I)? Mathematische Nachrichten, 292( 5), 1089-1105. doi:10.1002/mana.201700348
    • NLM

      Cortes VM, Galego EM, Samuel C. When is c0(τ) complemented in tensor products of ℓp(I)? [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 1089-1105.Available from: https://doi.org/10.1002/mana.201700348
    • Vancouver

      Cortes VM, Galego EM, Samuel C. When is c0(τ) complemented in tensor products of ℓp(I)? [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 1089-1105.Available from: https://doi.org/10.1002/mana.201700348
  • In: Monatshefte für Mathematik. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCON-VILLAMIZAR, Michael A. Continuous maps induced by embeddings of C0(K) spaces into C0(S,X) spaces. Monatshefte für Mathematik, Wien, Springer, v. 186, n. 1, p. 37–47, 2018. Disponível em: < https://dx.doi.org/10.1007/s00605-016-1014-x > DOI: 10.1007/s00605-016-1014-x.
    • APA

      Galego, E. M., & Rincon-Villamizar, M. A. (2018). Continuous maps induced by embeddings of C0(K) spaces into C0(S,X) spaces. Monatshefte für Mathematik, 186( 1), 37–47. doi:10.1007/s00605-016-1014-x
    • NLM

      Galego EM, Rincon-Villamizar MA. Continuous maps induced by embeddings of C0(K) spaces into C0(S,X) spaces [Internet]. Monatshefte für Mathematik. 2018 ; 186( 1): 37–47.Available from: https://dx.doi.org/10.1007/s00605-016-1014-x
    • Vancouver

      Galego EM, Rincon-Villamizar MA. Continuous maps induced by embeddings of C0(K) spaces into C0(S,X) spaces [Internet]. Monatshefte für Mathematik. 2018 ; 186( 1): 37–47.Available from: https://dx.doi.org/10.1007/s00605-016-1014-x
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: álgebras De Operadores

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana; GALEGO, Eloi Medina; GONZÁLEZ, Manuel. Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 465, n. 1, p. 309-317, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.05.007 > DOI: 10.1016/j.jmaa.2018.05.007.
    • APA

      Cely, L., Galego, E. M., & González, M. (2018). Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, 465( 1), 309-317. doi:10.1016/j.jmaa.2018.05.007
    • NLM

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
    • Vancouver

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCON-VILLAMIZAR, Michael A. On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 467, n. 2, p. 1287-1296, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.08.003 > DOI: 10.1016/j.jmaa.2018.08.003.
    • APA

      Galego, E. M., & Rincon-Villamizar, M. A. (2018). On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, 467( 2), 1287-1296. doi:10.1016/j.jmaa.2018.08.003
    • NLM

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
    • Vancouver

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
  • In: Pacific Journal of Mathematics. Unidade: IME

    Subjects: Espaços De Banach

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SILVA, André Luis Porto da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces. Pacific Journal of Mathematics, Carmel Valley, Matematical Sciences Publishers, v. 297, n. 1, p. 87-100, 2018. Disponível em: < http://dx.doi.org/10.2140/pjm.2018.297.87 >.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2018). An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces. Pacific Journal of Mathematics, 297( 1), 87-100. Recuperado de http://dx.doi.org/10.2140/pjm.2018.297.87
    • NLM

      Galego EM, Silva ALP da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces [Internet]. Pacific Journal of Mathematics. 2018 ; 297( 1): 87-100.Available from: http://dx.doi.org/10.2140/pjm.2018.297.87
    • Vancouver

      Galego EM, Silva ALP da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces [Internet]. Pacific Journal of Mathematics. 2018 ; 297( 1): 87-100.Available from: http://dx.doi.org/10.2140/pjm.2018.297.87
  • In: Studia Mathematica. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SILVA, André Luis Porto da. Quasi-isometries of C0(K,E) spaces which determine K for all Euclidean spaces E. Studia Mathematica, Warsaw, Institute of Mathematics, Polish Academy of Sciences, v. 243, p. 233-242, 2018. Disponível em: < https://doi.org/10.4064/sm8747-8-2017 > DOI: 10.4064/sm8747-8-2017.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2018). Quasi-isometries of C0(K,E) spaces which determine K for all Euclidean spaces E. Studia Mathematica, 243, 233-242. doi:10.4064/sm8747-8-2017
    • NLM

      Galego EM, Silva ALP da. Quasi-isometries of C0(K,E) spaces which determine K for all Euclidean spaces E [Internet]. Studia Mathematica. 2018 ; 243 233-242.Available from: https://doi.org/10.4064/sm8747-8-2017
    • Vancouver

      Galego EM, Silva ALP da. Quasi-isometries of C0(K,E) spaces which determine K for all Euclidean spaces E [Internet]. Studia Mathematica. 2018 ; 243 233-242.Available from: https://doi.org/10.4064/sm8747-8-2017
  • In: Results in Mathematics. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; GONZÁLEZ, Manuel; PELLO, Javier. On subprojectivity and superprojectivity of Banach spaces. Results in Mathematics, Basel, v. 71, n. 1-3, 2017. Disponível em: < http://dx.doi.org/10.1007/s00025-016-0558-3 > DOI: 10.1007/s00025-016-0558-3.
    • APA

      Galego, E. M., González, M., & Pello, J. (2017). On subprojectivity and superprojectivity of Banach spaces. Results in Mathematics, 71( 1-3). doi:10.1007/s00025-016-0558-3
    • NLM

      Galego EM, González M, Pello J. On subprojectivity and superprojectivity of Banach spaces [Internet]. Results in Mathematics. 2017 ; 71( 1-3):Available from: http://dx.doi.org/10.1007/s00025-016-0558-3
    • Vancouver

      Galego EM, González M, Pello J. On subprojectivity and superprojectivity of Banach spaces [Internet]. Results in Mathematics. 2017 ; 71( 1-3):Available from: http://dx.doi.org/10.1007/s00025-016-0558-3
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Análise Harmônica Em Grupos De Lie, Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana; GALEGO, Eloi Medina; GONZÁLEZ, Manuel. Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications[S.l.], Academic Press, v. 446, n. 1, p. 299-306, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.08.057 > DOI: 10.1016/j.jmaa.2016.08.057.
    • APA

      Cely, L., Galego, E. M., & González, M. (2017). Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, 446( 1), 299-306. doi:10.1016/j.jmaa.2016.08.057
    • NLM

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.08.057
    • Vancouver

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.08.057
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Matemática

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCÓN VILLAMIZAR, Michael Alexander. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K. Fundamenta Mathematicae, Warszawa, n. 239, p. 185-200, 2017. Disponível em: < http://dx.doi.org/10.4064/fm294-1-2017 > DOI: 10.4064/fm294-1-2017.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2017). Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K. Fundamenta Mathematicae, ( 239), 185-200. doi:10.4064/fm294-1-2017
    • NLM

      Galego EM, Rincón Villamizar MA. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K [Internet]. Fundamenta Mathematicae. 2017 ;( 239): 185-200.Available from: http://dx.doi.org/10.4064/fm294-1-2017
    • Vancouver

      Galego EM, Rincón Villamizar MA. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K [Internet]. Fundamenta Mathematicae. 2017 ;( 239): 185-200.Available from: http://dx.doi.org/10.4064/fm294-1-2017
  • In: Pacific Journal of Mathematics. Unidade: IME

    Subjects: Análise Funcional, Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SILVA, André Luis Porto da. A vector-valued Banach–Stone theorem with distortion √2. Pacific Journal of Mathematics[S.l.], Pacific Journal of Mathematics, v. 290, n. 2, p. 321-332, 2017. Disponível em: < https://dx.doi.org/10.2140/pjm.2017.290.321 > DOI: 10.2140/pjm.2017.290.321.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2017). A vector-valued Banach–Stone theorem with distortion √2. Pacific Journal of Mathematics, 290( 2), 321-332. doi:10.2140/pjm.2017.290.321
    • NLM

      Galego EM, Silva ALP da. A vector-valued Banach–Stone theorem with distortion √2 [Internet]. Pacific Journal of Mathematics. 2017 ; 290( 2): 321-332.Available from: https://dx.doi.org/10.2140/pjm.2017.290.321
    • Vancouver

      Galego EM, Silva ALP da. A vector-valued Banach–Stone theorem with distortion √2 [Internet]. Pacific Journal of Mathematics. 2017 ; 290( 2): 321-332.Available from: https://dx.doi.org/10.2140/pjm.2017.290.321
  • In: Mathematische Nachrichten. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCÓN VILLAMIZAR, Michael Alexander. How do the positive embeddings of C0(K,X) Banach lattices depend on the αth derivatives of K? Mathematische Nachrichten, Berlin, Wiley-Blackwell, v. 290, n. 10, p. 1544-1552, 2017. Disponível em: < http://dx.doi.org/10.1002/mana.201600244 > DOI: 10.1002/mana.201600244.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2017). How do the positive embeddings of C0(K,X) Banach lattices depend on the αth derivatives of K? Mathematische Nachrichten, 290( 10), 1544-1552. doi:10.1002/mana.201600244
    • NLM

      Galego EM, Rincón Villamizar MA. How do the positive embeddings of C0(K,X) Banach lattices depend on the αth derivatives of K? [Internet]. Mathematische Nachrichten. 2017 ; 290( 10): 1544-1552.Available from: http://dx.doi.org/10.1002/mana.201600244
    • Vancouver

      Galego EM, Rincón Villamizar MA. How do the positive embeddings of C0(K,X) Banach lattices depend on the αth derivatives of K? [Internet]. Mathematische Nachrichten. 2017 ; 290( 10): 1544-1552.Available from: http://dx.doi.org/10.1002/mana.201600244
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Análise Harmônica Em Espaços Euclidianos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos; CÔRTES, Vinícius Morelli; GALEGO, Eloi Medina. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications[S.l.], Academic Press, v. 450, n. 1, p. 12-20, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.01.009 > DOI: 10.1016/j.jmaa.2017.01.009.
    • APA

      Cidral, F. C., Côrtes, V. M., & Galego, E. M. (2017). A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, 450( 1), 12-20. doi:10.1016/j.jmaa.2017.01.009
    • NLM

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.009
    • Vancouver

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.009
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Análise Funcional, Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCÓN-VILLAMIZAR, Michael A. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? Journal of Mathematical Analysis and Applications[S.l.], Elsevier, v. 443, n. 2, p. 1362-1369, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.06.022 > DOI: 10.1016/j.jmaa.2016.06.022.
    • APA

      Galego, E. M., & Rincón-Villamizar, M. A. (2016). When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? Journal of Mathematical Analysis and Applications, 443( 2), 1362-1369. doi:10.1016/j.jmaa.2016.06.022
    • NLM

      Galego EM, Rincón-Villamizar MA. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 443( 2): 1362-1369.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.022
    • Vancouver

      Galego EM, Rincón-Villamizar MA. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 443( 2): 1362-1369.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.022
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Espaços De Banach, Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCÓN VILLAMIZAR, Michael Alexander. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? Journal of Mathematical Analysis and Applications, San Diego, v. 437, n. 1, p. 590-604, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.01.025 > DOI: 10.1016/j.jmaa.2016.01.025.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2016). When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? Journal of Mathematical Analysis and Applications, 437( 1), 590-604. doi:10.1016/j.jmaa.2016.01.025
    • NLM

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.01.025
    • Vancouver

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.01.025


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020