Filters : "FUTORNY, VYACHESLAV" Limpar

Filters



Refine with date range


  • In: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: álgebras De Lie, Análise Harmônica Em Espaços Euclidianos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang; FUTORNY, Vyacheslav; NEKLYUDOV, Mikhail. Convex topological algebras via linear vector fields and Cuntz algebras. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 225, n. 3, p. 1017-, 2021. Disponível em: < https://doi.org/10.1016/j.jpaa.2020.106535 > DOI: 10.1016/j.jpaa.2020.106535.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2021). Convex topological algebras via linear vector fields and Cuntz algebras. Journal of Pure and Applied Algebra, 225( 3), 1017-. doi:10.1016/j.jpaa.2020.106535
    • NLM

      Bock W, Futorny V, Neklyudov M. Convex topological algebras via linear vector fields and Cuntz algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 3): 1017-.Available from: https://doi.org/10.1016/j.jpaa.2020.106535
    • Vancouver

      Bock W, Futorny V, Neklyudov M. Convex topological algebras via linear vector fields and Cuntz algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 3): 1017-.Available from: https://doi.org/10.1016/j.jpaa.2020.106535
  • In: Linear Algebra and its Applications. Unidade: IME

    Subjects: álgebra Linear, Formas Quadráticas, Espaços Com Produto Interno

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V.; FUTORNY, Vyacheslav; SERGEICHUK, Vladimir V.; TANAKA, Yu-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, New York, Elsevier, v. 587, p. 92-110, 2020. Disponível em: < http://dx.doi.org/10.1016/j.laa.2019.11.004 > DOI: 10.1016/j.laa.2019.11.004.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.Available from: http://dx.doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.Available from: http://dx.doi.org/10.1016/j.laa.2019.11.004
  • In: Journal of Algebra. Unidade: IME

    Subjects: Teoria De Galois Diferencial, álgebra Diferencial

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando. Algebras of invariant differential operators. Journal of Algebra, New York, Elsevier, v. 542, p. 215-229, 2020. Disponível em: < https://doi.org/10.1016/j.jalgebra.2019.09.014 > DOI: 10.1016/j.jalgebra.2019.09.014.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Algebras of invariant differential operators. Journal of Algebra, 542, 215-229. doi:10.1016/j.jalgebra.2019.09.014
    • NLM

      Futorny V, Schwarz JF. Algebras of invariant differential operators [Internet]. Journal of Algebra. 2020 ; 542 215-229.Available from: https://doi.org/10.1016/j.jalgebra.2019.09.014
    • Vancouver

      Futorny V, Schwarz JF. Algebras of invariant differential operators [Internet]. Journal of Algebra. 2020 ; 542 215-229.Available from: https://doi.org/10.1016/j.jalgebra.2019.09.014
  • In: Israel Journal of Mathematics. Unidade: IME

    Subjects: Anéis E álgebras Não Associativos

    Available on 2021-07-27Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMIREZ, Luis Enrique; ZADUNAISKY, Pablo. Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, Jerusalem, Springer, 2020. Disponível em: < https://doi.org/10.1007/s11856-020-2048-2 > DOI: 10.1007/s11856-020-2048-2.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics. doi:10.1007/s11856-020-2048-2
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ;Available from: https://doi.org/10.1007/s11856-020-2048-2
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ;Available from: https://doi.org/10.1007/s11856-020-2048-2
  • In: Algebras and Representation Theory. Unidade: IME

    Subjects: álgebras De Lie, Grupos Quânticos

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KŘIŽKA, Libor; ZHANG, Jian. Generalized Verma Modules over Uq(sln(C)). Algebras and Representation Theory, Dordrecht, Springer, v. 23, p. 811-832, 2020. Disponível em: < https://doi.org/10.1007/s10468-019-09878-4 > DOI: 10.1007/s10468-019-09878-4.
    • APA

      Futorny, V., Křižka, L., & Zhang, J. (2020). Generalized Verma Modules over Uq(sln(C)). Algebras and Representation Theory, 23, 811-832. doi:10.1007/s10468-019-09878-4
    • NLM

      Futorny V, Křižka L, Zhang J. Generalized Verma Modules over Uq(sln(C)) [Internet]. Algebras and Representation Theory. 2020 ; 23 811-832.Available from: https://doi.org/10.1007/s10468-019-09878-4
    • Vancouver

      Futorny V, Křižka L, Zhang J. Generalized Verma Modules over Uq(sln(C)) [Internet]. Algebras and Representation Theory. 2020 ; 23 811-832.Available from: https://doi.org/10.1007/s10468-019-09878-4
  • In: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: álgebras De Lie, Grupos Quânticos

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; RAMIREZ, Luis Enrique; ZHANG, Jian. Gelfand-Tsetlin representations of finite W-algebras. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 224, n. 5, p. 1-26, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2019.106226 > DOI: 10.1016/j.jpaa.2019.106226.
    • APA

      Futorny, V., Ramirez, L. E., & Zhang, J. (2020). Gelfand-Tsetlin representations of finite W-algebras. Journal of Pure and Applied Algebra, 224( 5), 1-26. doi:10.1016/j.jpaa.2019.106226
    • NLM

      Futorny V, Ramirez LE, Zhang J. Gelfand-Tsetlin representations of finite W-algebras [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( 5): 1-26.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.106226
    • Vancouver

      Futorny V, Ramirez LE, Zhang J. Gelfand-Tsetlin representations of finite W-algebras [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( 5): 1-26.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.106226
  • In: Journal of Algebra. Unidade: IME

    Subjects: Anéis E álgebras Associativos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMIREZ, Luis Enrique; ZADUNAISKY, Pablo. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, New York, Elsevier, v. 556, p. 412-436, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2020.02.032 > DOI: 10.1016/j.jalgebra.2020.02.032.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, 556, 412-436. doi:10.1016/j.jalgebra.2020.02.032
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.02.032
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.02.032
  • In: Transformation Groups. Unidade: IME

    Subjects: álgebras De Lie

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALIXTO, Lucas Henrique; FUTORNY, Vyacheslav. Non-standard Verma type modules for 𝔮(n)(2). Transformation Groups, Cambridge, Springer, 2020. Disponível em: < http://dx.doi.org/10.1007/s00031-020-09550-y > DOI: 10.1007/s00031-020-09550-y.
    • APA

      Calixto, L. H., & Futorny, V. (2020). Non-standard Verma type modules for 𝔮(n)(2). Transformation Groups. doi:10.1007/s00031-020-09550-y
    • NLM

      Calixto LH, Futorny V. Non-standard Verma type modules for 𝔮(n)(2) [Internet]. Transformation Groups. 2020 ;Available from: http://dx.doi.org/10.1007/s00031-020-09550-y
    • Vancouver

      Calixto LH, Futorny V. Non-standard Verma type modules for 𝔮(n)(2) [Internet]. Transformation Groups. 2020 ;Available from: http://dx.doi.org/10.1007/s00031-020-09550-y
  • In: Mathematische Zeitschrift. Unidade: IME

    Subjects: Anéis E álgebras Associativos

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando. Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, Heidelberg, Springer, v. 295, p. 1323-1335, 2020. Disponível em: < https://doi.org/10.1007/s00209-019-02397-4 > DOI: 10.1007/s00209-019-02397-4.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, 295, 1323-1335. doi:10.1007/s00209-019-02397-4
    • NLM

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
    • Vancouver

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
  • In: Advances in Mathematics. Unidade: IME

    Subjects: Teoria Algébrica De Sistemas, álgebras De Lie

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; RAMÍREZ, Luis Enrique; ZHANG, Jian. Combinatorial construction of Gelfand–Tsetlin modules for gln. Advances in Mathematics, New York, Elsevier, v. 343, p. 681-711, 2019. Disponível em: < http://dx.doi.org/10.1016/j.aim.2018.11.027 > DOI: 10.1016/j.aim.2018.11.027.
    • APA

      Futorny, V., Ramírez, L. E., & Zhang, J. (2019). Combinatorial construction of Gelfand–Tsetlin modules for gln. Advances in Mathematics, 343, 681-711. doi:10.1016/j.aim.2018.11.027
    • NLM

      Futorny V, Ramírez LE, Zhang J. Combinatorial construction of Gelfand–Tsetlin modules for gln [Internet]. Advances in Mathematics. 2019 ; 343 681-711.Available from: http://dx.doi.org/10.1016/j.aim.2018.11.027
    • Vancouver

      Futorny V, Ramírez LE, Zhang J. Combinatorial construction of Gelfand–Tsetlin modules for gln [Internet]. Advances in Mathematics. 2019 ; 343 681-711.Available from: http://dx.doi.org/10.1016/j.aim.2018.11.027
  • In: Linear Algebra and its Applications. Unidade: IME

    Subjects: álgebras De Lie, Grupos Quânticos

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Viatcheslav M; HARTWIG, Jonas T. De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum glN. Linear Algebra and its Applications, Philadelphia, Elsevier BV, v. 568, p. 173-188, 2019. Disponível em: < https://doi.org/10.1016/j.laa.2018.08.011 > DOI: 10.1016/j.laa.2018.08.011.
    • APA

      Futorny, V. M., & Hartwig, J. T. (2019). De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum glN. Linear Algebra and its Applications, 568, 173-188. doi:10.1016/j.laa.2018.08.011
    • NLM

      Futorny VM, Hartwig JT. De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.Available from: https://doi.org/10.1016/j.laa.2018.08.011
    • Vancouver

      Futorny VM, Hartwig JT. De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.Available from: https://doi.org/10.1016/j.laa.2018.08.011
  • In: International Mathematics Research Notices. Unidade: IME

    Subjects: Anéis E álgebras Não Associativos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMÍREZ, Luis Enrique. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules. International Mathematics Research Notices, Cary, Oxford University Press, v. 2019, n. 5, p. 1463–1478, 2019. Disponível em: < https://www.doi.org/10.1093/imrn/rnx159 > DOI: 10.1093/imrn/rnx159.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2019). Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules. International Mathematics Research Notices, 2019( 5), 1463–1478. doi:10.1093/imrn/rnx159
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules [Internet]. International Mathematics Research Notices. 2019 ; 2019( 5): 1463–1478.Available from: https://www.doi.org/10.1093/imrn/rnx159
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules [Internet]. International Mathematics Research Notices. 2019 ; 2019( 5): 1463–1478.Available from: https://www.doi.org/10.1093/imrn/rnx159
  • In: Journal of Algebra. Unidade: IME

    Subjects: Física Matemática, Geometria Algébrica, Análise Funcional, álgebras De Operadores

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KŘIŽKA, Libor; SOMBERG, Petr. Geometric realizations of affine Kac-Moody algebras. Journal of Algebra, Ithaca, Elsevier, v. 528, p. 177-216, 2019. Disponível em: < https://doi.org/10.1016/j.jalgebra.2019.03.011 > DOI: 10.1016/j.jalgebra.2019.03.011.
    • APA

      Futorny, V., Křižka, L., & Somberg, P. (2019). Geometric realizations of affine Kac-Moody algebras. Journal of Algebra, 528, 177-216. doi:10.1016/j.jalgebra.2019.03.011
    • NLM

      Futorny V, Křižka L, Somberg P. Geometric realizations of affine Kac-Moody algebras [Internet]. Journal of Algebra. 2019 ; 528 177-216.Available from: https://doi.org/10.1016/j.jalgebra.2019.03.011
    • Vancouver

      Futorny V, Křižka L, Somberg P. Geometric realizations of affine Kac-Moody algebras [Internet]. Journal of Algebra. 2019 ; 528 177-216.Available from: https://doi.org/10.1016/j.jalgebra.2019.03.011
  • In: Israel Journal of Mathematics. Unidade: IME

    Subjects: álgebras De Lie

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly; FUTORNY, Vyacheslav; NILSSON, Jonathan. Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, Jerusalem, Springer, v. 233, n. 1, p. 379-399, 2019. Disponível em: < http://dx.doi.org/10.1007/s11856-019-1909-z > DOI: 10.1007/s11856-019-1909-z.
    • APA

      Billig, Y., Futorny, V., & Nilsson, J. (2019). Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, 233( 1), 379-399. doi:10.1007/s11856-019-1909-z
    • NLM

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.Available from: http://dx.doi.org/10.1007/s11856-019-1909-z
    • Vancouver

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.Available from: http://dx.doi.org/10.1007/s11856-019-1909-z
  • In: Communications in Algebra. Unidade: IME

    Subjects: Anéis E álgebras Associativos, Anéis De Grupos

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr; FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, New York, Taylor and Francis, v. 47, n. 10, p. 4114–4124, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2019.1579336 > DOI: 10.1080/00927872.2019.1579336.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
  • In: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: álgebras De Lie, Grupos Quânticos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; RAMIREZ, Luis Enrique; ZHANG, Jian. Explicit construction of irreducible modules for Uq(gln). São Paulo Journal of Mathematical Sciences, Heidelberg, Springer, v. 13, n. 1, p. 83-95, 2019. Disponível em: < https://doi.org/10.1007/s40863-019-00123-w > DOI: 10.1007/s40863-019-00123-w.
    • APA

      Futorny, V., Ramirez, L. E., & Zhang, J. (2019). Explicit construction of irreducible modules for Uq(gln). São Paulo Journal of Mathematical Sciences, 13( 1), 83-95. doi:10.1007/s40863-019-00123-w
    • NLM

      Futorny V, Ramirez LE, Zhang J. Explicit construction of irreducible modules for Uq(gln) [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 83-95.Available from: https://doi.org/10.1007/s40863-019-00123-w
    • Vancouver

      Futorny V, Ramirez LE, Zhang J. Explicit construction of irreducible modules for Uq(gln) [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 83-95.Available from: https://doi.org/10.1007/s40863-019-00123-w
  • In: Mathematische Zeitschrift. Unidade: IME

    Subjects: álgebras De Lie

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Viatcheslav M; KOCHLOUKOVA, Dessislava H; SIDKI, Said N. On self-similar Lie algebras and virtual endomorphisms. Mathematische Zeitschrift, Heidelberg, Springer, v. 292, n. 3-4, p. 1123–1156, 2019. Disponível em: < http://dx.doi.org/10.1007/s00209-018-2146-6 > DOI: 10.1007/s00209-018-2146-6.
    • APA

      Futorny, V. M., Kochloukova, D. H., & Sidki, S. N. (2019). On self-similar Lie algebras and virtual endomorphisms. Mathematische Zeitschrift, 292( 3-4), 1123–1156. doi:10.1007/s00209-018-2146-6
    • NLM

      Futorny VM, Kochloukova DH, Sidki SN. On self-similar Lie algebras and virtual endomorphisms [Internet]. Mathematische Zeitschrift. 2019 ; 292( 3-4): 1123–1156.Available from: http://dx.doi.org/10.1007/s00209-018-2146-6
    • Vancouver

      Futorny VM, Kochloukova DH, Sidki SN. On self-similar Lie algebras and virtual endomorphisms [Internet]. Mathematische Zeitschrift. 2019 ; 292( 3-4): 1123–1156.Available from: http://dx.doi.org/10.1007/s00209-018-2146-6
  • Conference title: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: álgebras De Lie

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMIREZ, Luis Enrique; FUTORNY, Viatcheslav M; ZHANG, Jian. Explicit construction of Gelfand-Tsetlin gl(n)-modules. Anais.. Rio de Janeiro: Impa, 2019.Disponível em: .
    • APA

      Ramirez, L. E., Futorny, V. M., & Zhang, J. (2019). Explicit construction of Gelfand-Tsetlin gl(n)-modules. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Ramirez LE, Futorny VM, Zhang J. Explicit construction of Gelfand-Tsetlin gl(n)-modules [Internet]. 2019 ;Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Ramirez LE, Futorny VM, Zhang J. Explicit construction of Gelfand-Tsetlin gl(n)-modules [Internet]. 2019 ;Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • In: Journal of Algebra. Unidade: IME

    Subjects: Grupos Quanticos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KŘIŽKA, Libor; ZHANG, Jian. Quantum Howe duality and invariant polynomials. Journal of Algebra, New York, Elsevier, v. 530, p. 326-367, 2019. Disponível em: < https://doi.org/10.1016/j.jalgebra.2019.04.014 > DOI: 10.1016/j.jalgebra.2019.04.014.
    • APA

      Futorny, V., Křižka, L., & Zhang, J. (2019). Quantum Howe duality and invariant polynomials. Journal of Algebra, 530, 326-367. doi:10.1016/j.jalgebra.2019.04.014
    • NLM

      Futorny V, Křižka L, Zhang J. Quantum Howe duality and invariant polynomials [Internet]. Journal of Algebra. 2019 ; 530 326-367.Available from: https://doi.org/10.1016/j.jalgebra.2019.04.014
    • Vancouver

      Futorny V, Křižka L, Zhang J. Quantum Howe duality and invariant polynomials [Internet]. Journal of Algebra. 2019 ; 530 326-367.Available from: https://doi.org/10.1016/j.jalgebra.2019.04.014
  • In: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: Anéis E álgebras Associativos, Teoria Da Representação

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; IUSENKO, Kostiantyn. Stable representations of posets. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 223, n. 12, p. 5251-5278, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2019.03.020 > DOI: 10.1016/j.jpaa.2019.03.020.
    • APA

      Futorny, V., & Iusenko, K. (2019). Stable representations of posets. Journal of Pure and Applied Algebra, 223( 12), 5251-5278. doi:10.1016/j.jpaa.2019.03.020
    • NLM

      Futorny V, Iusenko K. Stable representations of posets [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 12): 5251-5278.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.03.020
    • Vancouver

      Futorny V, Iusenko K. Stable representations of posets [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 12): 5251-5278.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.03.020


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020