Filters : "FUTORNY, VYACHESLAV" Limpar

Filters



Refine with date range


  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GEOMETRIA ALGÉBRICA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Twisting functors and Gelfand–Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0219199722500316. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., & Křižka, L. (2022). Twisting functors and Gelfand–Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics. doi:10.1142/S0219199722500316
    • NLM

      Futorny V, Křižka L. Twisting functors and Gelfand–Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2022 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S0219199722500316
    • Vancouver

      Futorny V, Křižka L. Twisting functors and Gelfand–Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2022 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S0219199722500316
  • Source: Journal of Algebra. Unidade: IME

    Subject: SUPERÁLGEBRAS DE LIE

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Luan et al. Representations of affine Lie superalgebras and their quantization in type A. Journal of Algebra, v. 611, p. 320-340, 2022Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jalgebra.2022.08.012. Acesso em: 07 dez. 2022.
    • APA

      Bezerra, L., Calixto, L., Futorny, V., & Kashuba, I. (2022). Representations of affine Lie superalgebras and their quantization in type A. Journal of Algebra, 611, 320-340. doi:10.1016/j.jalgebra.2022.08.012
    • NLM

      Bezerra L, Calixto L, Futorny V, Kashuba I. Representations of affine Lie superalgebras and their quantization in type A [Internet]. Journal of Algebra. 2022 ; 611 320-340.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1016/j.jalgebra.2022.08.012
    • Vancouver

      Bezerra L, Calixto L, Futorny V, Kashuba I. Representations of affine Lie superalgebras and their quantization in type A [Internet]. Journal of Algebra. 2022 ; 611 320-340.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1016/j.jalgebra.2022.08.012
  • Source: Letters in Mathematical Physics. Unidade: IME

    Subjects: C* ÁLGEBRAS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang e FUTORNY, Vyacheslav e NEKLYUDOV, Mikhail. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra. Letters in Mathematical Physics, v. 112, n. artigo 24, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11005-022-01507-4. Acesso em: 07 dez. 2022.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2022). A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra. Letters in Mathematical Physics, 112( artigo 24), 1-11. doi:10.1007/s11005-022-01507-4
    • NLM

      Bock W, Futorny V, Neklyudov M. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra [Internet]. Letters in Mathematical Physics. 2022 ; 112( artigo 24): 1-11.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s11005-022-01507-4
    • Vancouver

      Bock W, Futorny V, Neklyudov M. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra [Internet]. Letters in Mathematical Physics. 2022 ; 112( artigo 24): 1-11.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s11005-022-01507-4
  • Source: Mathematics. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAZEMI, Abdullah et al. Three representation types for systems of forms and linear maps. Mathematics, v. 9, n. art. 455, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050455. Acesso em: 07 dez. 2022.
    • APA

      Alazemi, A., Anđelić, M., da Fonseca, C. M., Futorny, V., & Sergeichuk, V. V. (2021). Three representation types for systems of forms and linear maps. Mathematics, 9( art. 455), 1-12. doi:10.3390/math9050455
    • NLM

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2022 dez. 07 ] Available from: https://doi.org/10.3390/math9050455
    • Vancouver

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2022 dez. 07 ] Available from: https://doi.org/10.3390/math9050455
  • Source: Linear Algebra and its Applications. Conference title: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Available on 2022-12-11Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 07 dez. 2022. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Asian Journal of Mathematics. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e BEKKERT, Viktor e FUTORNY, Vyacheslav. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, v. 25, n. 5, p. 727-756, 2021Tradução . . Disponível em: https://doi.org/10.4310/AJM.2021.v25.n5.a6. Acesso em: 07 dez. 2022.
    • APA

      Bavula, V., Bekkert, V., & Futorny, V. (2021). Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, 25( 5), 727-756. doi:10.4310/AJM.2021.v25.n5.a6
    • NLM

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2022 dez. 07 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
    • Vancouver

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2022 dez. 07 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando e SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, v. 225, n. 11, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106741. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, OPERADORES DIFERENCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, v. 31, n. 04, p. 605-622, 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218196721500296. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., & Schwarz, J. F. (2021). Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, 31( 04), 605-622. doi:10.1142/S0218196721500296
    • NLM

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S0218196721500296
    • Vancouver

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S0218196721500296
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subject: FÍSICA MATEMÁTICA

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, n. 2, p. 841-891, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03861-7. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., & Křižka, L. (2021). Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, ( 2), 841-891. doi:10.1007/s00220-020-03861-7
    • NLM

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
    • Vancouver

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang e FUTORNY, Vyacheslav e NEKLYUDOV, Mikhail. Convex topological algebras via linear vector fields and Cuntz algebras. Journal of Pure and Applied Algebra, v. 225, n. 3, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2020.106535. Acesso em: 07 dez. 2022.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2021). Convex topological algebras via linear vector fields and Cuntz algebras. Journal of Pure and Applied Algebra, 225( 3), 1-17. doi:10.1016/j.jpaa.2020.106535
    • NLM

      Bock W, Futorny V, Neklyudov M. Convex topological algebras via linear vector fields and Cuntz algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 3): 1-17.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106535
    • Vancouver

      Bock W, Futorny V, Neklyudov M. Convex topological algebras via linear vector fields and Cuntz algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 3): 1-17.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106535
  • Source: Revista Matemática Iberoamericana. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALIXTO, Lucas e FUTORNY, Vyacheslav. Highest weight modules for affine Lie superalgebras. Revista Matemática Iberoamericana, v. 37, n. 1, p. 129-160, 2021Tradução . . Disponível em: https://doi.org/10.4171/RMI/1203. Acesso em: 07 dez. 2022.
    • APA

      Calixto, L., & Futorny, V. (2021). Highest weight modules for affine Lie superalgebras. Revista Matemática Iberoamericana, 37( 1), 129-160. doi:10.4171/RMI/1203
    • NLM

      Calixto L, Futorny V. Highest weight modules for affine Lie superalgebras [Internet]. Revista Matemática Iberoamericana. 2021 ; 37( 1): 129-160.[citado 2022 dez. 07 ] Available from: https://doi.org/10.4171/RMI/1203
    • Vancouver

      Calixto L, Futorny V. Highest weight modules for affine Lie superalgebras [Internet]. Revista Matemática Iberoamericana. 2021 ; 37( 1): 129-160.[citado 2022 dez. 07 ] Available from: https://doi.org/10.4171/RMI/1203
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 07 dez. 2022.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav. Representations of Lie algebras. São Paulo Journal of Mathematical Sciences, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00245-0. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V. (2021). Representations of Lie algebras. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-021-00245-0
    • NLM

      Futorny V. Representations of Lie algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s40863-021-00245-0
    • Vancouver

      Futorny V. Representations of Lie algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s40863-021-00245-0
  • Source: International Mathematics Research Notices. Unidade: IME

    Subject: ÁLGEBRA

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HERNÁNDEZ MORALES, Oscar Armando e RAMIREZ, Luis Enrique. Simple modules for affine vertex algebras in the minimal nilpotent orbit. International Mathematics Research Notices, 2021Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnab159. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., Hernández Morales, O. A., & Ramirez, L. E. (2021). Simple modules for affine vertex algebras in the minimal nilpotent orbit. International Mathematics Research Notices. doi:10.1093/imrn/rnab159
    • NLM

      Futorny V, Hernández Morales OA, Ramirez LE. Simple modules for affine vertex algebras in the minimal nilpotent orbit [Internet]. International Mathematics Research Notices. 2021 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1093/imrn/rnab159
    • Vancouver

      Futorny V, Hernández Morales OA, Ramirez LE. Simple modules for affine vertex algebras in the minimal nilpotent orbit [Internet]. International Mathematics Research Notices. 2021 ;[citado 2022 dez. 07 ] Available from: https://doi.org/10.1093/imrn/rnab159
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 07 dez. 2022.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Bulletin of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMIREZ, Luis Enrique. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, v. 11, n. artigo 2130001, p. 1-109, 2021Tradução . . Disponível em: https://doi.org/10.1142/S1664360721300012. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., Grantcharov, D., & Ramirez, L. E. (2021). Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, 11( artigo 2130001), 1-109. doi:10.1142/S1664360721300012
    • NLM

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S1664360721300012
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1142/S1664360721300012
  • Source: São Paulo Journal of Mathematical Sciences. Conference title: Workshop on Geometry in Algebra and Algebra in Geometry - GAAG. Unidade: IME

    Subjects: ÁLGEBRA, GEOMETRIA

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BURSZTYN, Henrique et al. Workshop on geometry in algebra and algebra in geometry. [Editorial]. São Paulo Journal of Mathematical Sciences. Heidelberg: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s40863-021-00261-0. Acesso em: 07 dez. 2022. , 2021
    • APA

      Bursztyn, H., Futorny, V., Hernandez Rizzo, P., Iusenko, K., & Ortiz, C. (2021). Workshop on geometry in algebra and algebra in geometry. [Editorial]. São Paulo Journal of Mathematical Sciences. Heidelberg: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s40863-021-00261-0
    • NLM

      Bursztyn H, Futorny V, Hernandez Rizzo P, Iusenko K, Ortiz C. Workshop on geometry in algebra and algebra in geometry. [Editorial] [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 615-616.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s40863-021-00261-0
    • Vancouver

      Bursztyn H, Futorny V, Hernandez Rizzo P, Iusenko K, Ortiz C. Workshop on geometry in algebra and algebra in geometry. [Editorial] [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 615-616.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s40863-021-00261-0
  • Source: Transformation Groups. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALIXTO, Lucas Henrique e FUTORNY, Vyacheslav. Non-standard Verma type modules for 𝔮(n)(2). Transformation Groups, v. 26, n. 3, p. 809-825, 2021Tradução . . Disponível em: http://dx.doi.org/10.1007/s00031-020-09550-y. Acesso em: 07 dez. 2022.
    • APA

      Calixto, L. H., & Futorny, V. (2021). Non-standard Verma type modules for 𝔮(n)(2). Transformation Groups, 26( 3), 809-825. doi:10.1007/s00031-020-09550-y
    • NLM

      Calixto LH, Futorny V. Non-standard Verma type modules for 𝔮(n)(2) [Internet]. Transformation Groups. 2021 ; 26( 3): 809-825.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1007/s00031-020-09550-y
    • Vancouver

      Calixto LH, Futorny V. Non-standard Verma type modules for 𝔮(n)(2) [Internet]. Transformation Groups. 2021 ; 26( 3): 809-825.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1007/s00031-020-09550-y
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.laa.2019.11.004. Acesso em: 07 dez. 2022.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2022 dez. 07 ] Available from: http://dx.doi.org/10.1016/j.laa.2019.11.004
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, v. 239, n. 1, p. 99-128, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11856-020-2048-2. Acesso em: 07 dez. 2022.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, 239( 1), 99-128. doi:10.1007/s11856-020-2048-2
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s11856-020-2048-2
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.[citado 2022 dez. 07 ] Available from: https://doi.org/10.1007/s11856-020-2048-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022