Filtros : "EBERT, MARCELO REMPEL" Limpar

Filtros



Refine with date range


  • Source: Asymptotic Analysis. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, Marcello; EBERT, Marcelo Rempel. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients. Asymptotic Analysis, Amsterdam, v. 123, n. 1-2, p. 1-40, 2021. Disponível em: < https://doi.org/10.3233/ASY-201624 > DOI: 10.3233/ASY-201624.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2021). Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients. Asymptotic Analysis, 123( 1-2), 1-40. doi:10.3233/ASY-201624
    • NLM

      D’Abbicco M, Ebert MR. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients [Internet]. Asymptotic Analysis. 2021 ; 123( 1-2): 1-40.Available from: https://doi.org/10.3233/ASY-201624
    • Vancouver

      D’Abbicco M, Ebert MR. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients [Internet]. Asymptotic Analysis. 2021 ; 123( 1-2): 1-40.Available from: https://doi.org/10.3233/ASY-201624
  • Source: Abstracts. Conference titles: Web Seminar on Linear PDE’s and Related Topics. Unidade: FFCLRP

    Subjects: EVENTOS, MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES, PROBLEMA DE CAUCHY

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. Oscillatory integrals in fourier analysis and applications to wave type models. Anais.. São Carlos: ICMC-USP/UFPR, 2020.
    • APA

      Ebert, M. R. (2020). Oscillatory integrals in fourier analysis and applications to wave type models. In Abstracts. São Carlos: ICMC-USP/UFPR.
    • NLM

      Ebert MR. Oscillatory integrals in fourier analysis and applications to wave type models. Abstracts. 2020 ;
    • Vancouver

      Ebert MR. Oscillatory integrals in fourier analysis and applications to wave type models. Abstracts. 2020 ;
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; LUZ, Cleverson R. da; PALMA, Maíra F. G. The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, Basel, v. 27, n. 5, 2020. Disponível em: < https://doi.org/10.1007/s00030-020-00644-w > DOI: 10.1007/s00030-020-00644-w.
    • APA

      Ebert, M. R., Luz, C. R. da, & Palma, M. F. G. (2020). The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, 27( 5). doi:10.1007/s00030-020-00644-w
    • NLM

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):Available from: https://doi.org/10.1007/s00030-020-00644-w
    • Vancouver

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):Available from: https://doi.org/10.1007/s00030-020-00644-w
  • Source: Mathematische Annalen. Unidade: FFCLRP

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; GIRARDI, G.; REISSIG, Michael. Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, Heidelberg, v. 378, p. 1311-1326, 2020. Disponível em: < https://doi.org/10.1007/s00208-019-01921-5 > DOI: 10.1007/s00208-019-01921-5.
    • APA

      Ebert, M. R., Girardi, G., & Reissig, M. (2020). Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, 378, 1311-1326. doi:10.1007/s00208-019-01921-5
    • NLM

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.Available from: https://doi.org/10.1007/s00208-019-01921-5
    • Vancouver

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.Available from: https://doi.org/10.1007/s00208-019-01921-5
  • Source: Journal of Fourier Analysis and Applications. Unidade: FFCLRP

    Subjects: TEORIA DAS EQUAÇÕES, FRAÇÕES CONTÍNUAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello; EBERT, Marcelo Rempel; PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, Basel, v. 25, n. 3, p. 696-731, 2019. Disponível em: < https://doi.org/10.1007/s00041-018-9627-1 > DOI: 10.1007/s00041-018-9627-1.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.Available from: https://doi.org/10.1007/s00041-018-9627-1
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.Available from: https://doi.org/10.1007/s00041-018-9627-1
  • Source: Abstracts. Conference titles: ISAAC Congress. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. About critical exponents in semi-linear de Sitter models. Anais.. Aveiro: ISAAC, 2019.Disponível em: .
    • APA

      Ebert, M. R. (2019). About critical exponents in semi-linear de Sitter models. In Abstracts. Aveiro: ISAAC. Recuperado de http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
    • NLM

      Ebert MR. About critical exponents in semi-linear de Sitter models [Internet]. Abstracts. 2019 ;Available from: http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
    • Vancouver

      Ebert MR. About critical exponents in semi-linear de Sitter models [Internet]. Abstracts. 2019 ;Available from: http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
  • Source: Abstracts. Conference titles: Summer Meeting on Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. Asymptotic profiles for a damped plate equation with time-dependent coefficients. Anais.. São Carlos: ICMC-USP, 2019.Disponível em: .
    • APA

      Ebert, M. R. (2019). Asymptotic profiles for a damped plate equation with time-dependent coefficients. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
    • NLM

      Ebert MR. Asymptotic profiles for a damped plate equation with time-dependent coefficients [Internet]. Abstracts. 2019 ;Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
    • Vancouver

      Ebert MR. Asymptotic profiles for a damped plate equation with time-dependent coefficients [Internet]. Abstracts. 2019 ;Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
  • Source: Minicurso. Conference titles: Encontro Nacional de Análise Matemática e Aplicações - ENAMA. Unidade: FFCLRP

    Assunto: ANÁLISE MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. Phase space analysis for evolutions PDE's and applications. Anais.. Florianópolis: UFSC, 2019.
    • APA

      Ebert, M. R. (2019). Phase space analysis for evolutions PDE's and applications. In Minicurso. Florianópolis: UFSC.
    • NLM

      Ebert MR. Phase space analysis for evolutions PDE's and applications. Minicurso. 2019 ;
    • Vancouver

      Ebert MR. Phase space analysis for evolutions PDE's and applications. Minicurso. 2019 ;
  • Source: Anais. Conference titles: Encontro Nacional de Análise Matemática e Aplicações - ENAMA. Unidade: FFCLRP

    Assunto: ANÁLISE MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALMA, Maíra Gauer; LUZ, Cleverson Roberto da; EBERT, Marcelo Rempel. Existence, stability and critical exponent to a second order equation with fractional laplacian operators. Anais.. Florianópolis: UFSC, 2019.
    • APA

      Palma, M. G., Luz, C. R. da, & Ebert, M. R. (2019). Existence, stability and critical exponent to a second order equation with fractional laplacian operators. In Anais. Florianópolis: UFSC.
    • NLM

      Palma MG, Luz CR da, Ebert MR. Existence, stability and critical exponent to a second order equation with fractional laplacian operators. Anais. 2019 ;
    • Vancouver

      Palma MG, Luz CR da, Ebert MR. Existence, stability and critical exponent to a second order equation with fractional laplacian operators. Anais. 2019 ;
  • Unidade: FFCLRP

    Subjects: ANÁLISE MATEMÁTICA, GEOMETRIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; PICON, Tiago Henrique. Symposium in Harmonic Analysis and Geometric Measure Theory. [S.l: s.n.], 2018.
    • APA

      Ebert, M. R., & Picon, T. H. (2018). Symposium in Harmonic Analysis and Geometric Measure Theory. Ribeirão Preto: DCM/FFCLRP/USP.
    • NLM

      Ebert MR, Picon TH. Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;
    • Vancouver

      Ebert MR, Picon TH. Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. [S.l: s.n.], 2018.Disponível em: DOI: 10.1007/978-3-319-66456-9.
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;Available from: http://dx.doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;Available from: http://dx.doi.org/10.1007/978-3-319-66456-9
  • Source: Nonlinear Analysis : Real World Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; REISSIG, Michael. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, Oxford, v. 40, p. 14-54, 2018. Disponível em: < http://dx.doi.org/10.1016/j.nonrwa.2017.08.009 > DOI: 10.1016/j.nonrwa.2017.08.009.
    • APA

      Ebert, M. R., & Reissig, M. (2018). Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, 40, 14-54. doi:10.1016/j.nonrwa.2017.08.009
    • NLM

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.Available from: http://dx.doi.org/10.1016/j.nonrwa.2017.08.009
    • Vancouver

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.Available from: http://dx.doi.org/10.1016/j.nonrwa.2017.08.009
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello; EBERT, Marcelo Rempel; PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, Lausanne, p. 465-471, 2017.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. ISAAC Congress, 11th. [S.l: s.n.], 2017.
    • APA

      Ebert, M. R. (2017). ISAAC Congress, 11th. Växjö: ISAAC.
    • NLM

      Ebert MR. ISAAC Congress, 11th. 2017 ;
    • Vancouver

      Ebert MR. ISAAC Congress, 11th. 2017 ;
  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, West Palm Beach, v. 23, n. 11-12, p. 847-888, 2017. Disponível em: < https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835 >.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Trends in Mathemstics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; FITRIANA, L.; HIROSAWA, F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, Lausanne, p. 481-488, 2017.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2017). A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, 481-488.
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M.; EBERT, Marcelo Rempel. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, Amsterdam, v. 149, p. 1-40, 2017. Disponível em: < http://dx.doi.org/10.1016/j.na.2016.10.010 > DOI: 10.1016/j.na.2016.10.010.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2017). A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, 149, 1-40. doi:10.1016/j.na.2016.10.010
    • NLM

      D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.Available from: http://dx.doi.org/10.1016/j.na.2016.10.010
    • Vancouver

      D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.Available from: http://dx.doi.org/10.1016/j.na.2016.10.010
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES NÃO LINEARES, PROBLEMA DE CAUCHY, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M.; EBERT, Marcelo Rempel; LUCENTE, S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, Stuttgart, v. 40, p. 6480-6494, 2017. Disponível em: < http://dx.doi.org/10.1002/mma.4469 > DOI: 10.1002/mma.4469.
    • APA

      D'Abbicco, M., Ebert, M. R., & Lucente, S. (2017). Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, 40, 6480-6494. doi:10.1002/mma.4469
    • NLM

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.Available from: http://dx.doi.org/10.1002/mma.4469
    • Vancouver

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.Available from: http://dx.doi.org/10.1002/mma.4469
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: FFCLRP

    Subjects: FUNÇÕES DE UMA VARIÁVEL COMPLEXA, OPERADORES PSEUDODIFERENCIAIS, SISTEMAS DISSIPATIVO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M.; EBERT, Marcelo Rempel; PICON, Tiago Henrique. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, Basel, v. 7, n. 2, p. 261-293, 2016. Disponível em: < http://dx.doi.org/10.1007/s11868-015-0141-9 > DOI: 10.1007/s11868-015-0141-9.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2016). Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, 7( 2), 261-293. doi:10.1007/s11868-015-0141-9
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.Available from: http://dx.doi.org/10.1007/s11868-015-0141-9
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.Available from: http://dx.doi.org/10.1007/s11868-015-0141-9
  • Source: Journal of Hyperbolic Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MODELOS DE ONDAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel; REISSIG, Michael. Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, Singapore, v. 13, n. 2, p. 417-439, 2016. Disponível em: < http://dx.doi.org/10.1142/s0219891616500132 > DOI: 10.1142/s0219891616500132.
    • APA

      Ebert, M. R., & Reissig, M. (2016). Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, 13( 2), 417-439. doi:10.1142/s0219891616500132
    • NLM

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.Available from: http://dx.doi.org/10.1142/s0219891616500132
    • Vancouver

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.Available from: http://dx.doi.org/10.1142/s0219891616500132

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021