Filters : "CHESTAKOV, IVAN" Limpar

Filters



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Available on 2024-03-18Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OVALLE, Daniel Felipe Castro; SHESTAKOV, Ivan P. Composition color algebras. Journal of Algebra, New York, 2022. Disponível em: < https://doi.org/10.1016/j.jalgebra.2022.03.012 > DOI: 10.1016/j.jalgebra.2022.03.012.
    • APA

      Ovalle, D. F. C., & Shestakov, I. P. (2022). Composition color algebras. Journal of Algebra. doi:10.1016/j.jalgebra.2022.03.012
    • NLM

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ;Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
    • Vancouver

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ;Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEN, Yuqun; SHESTAKOV, Ivan P; ZHANG, Zerui. Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, New York, v. 590, p. 234-253, 2022. Disponível em: < https://doi.org/10.1016/j.jalgebra.2021.10.015 > DOI: 10.1016/j.jalgebra.2021.10.015.
    • APA

      Chen, Y., Shestakov, I. P., & Zhang, Z. (2022). Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, 590, 234-253. doi:10.1016/j.jalgebra.2021.10.015
    • NLM

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
    • Vancouver

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
  • Source: Journal of Algebra. Unidade: IME

    Subject: ÁLGEBRA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich; SHASHKOV, Oleg Vladimirovich; SHESTAKOV, Ivan P. Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, New York, v. 572, p. 111-128, 2021. Disponível em: < https://doi.org/10.1016/j.jalgebra.2020.12.009 > DOI: 10.1016/j.jalgebra.2020.12.009.
    • APA

      Pchelintsev, S. V., Shashkov, O. V., & Shestakov, I. P. (2021). Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, 572, 111-128. doi:10.1016/j.jalgebra.2020.12.009
    • NLM

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
    • Vancouver

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    Available on 2022-07-14Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto; PERESI, Luiz Antonio; SHESTAKOV, Ivan P. A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, Heidelberg, 2021. Disponível em: < https://doi.org/10.1007/s40863-021-00248-x > DOI: 10.1007/s40863-021-00248-x.
    • APA

      Murakami, L. S. I., Peresi, L. A., & Shestakov, I. P. (2021). A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-021-00248-x
    • NLM

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ;Available from: https://doi.org/10.1007/s40863-021-00248-x
    • Vancouver

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ;Available from: https://doi.org/10.1007/s40863-021-00248-x
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZHANG, Zerui. Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, Amsterdam, v. 225, n. 8, 2021. Disponível em: < https://doi.org/10.1016/j.jpaa.2020.106636 > DOI: 10.1016/j.jpaa.2020.106636.
    • APA

      Shestakov, I. P., & Zhang, Z. (2021). Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, 225( 8). doi:10.1016/j.jpaa.2020.106636
    • NLM

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):Available from: https://doi.org/10.1016/j.jpaa.2020.106636
    • Vancouver

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):Available from: https://doi.org/10.1016/j.jpaa.2020.106636
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando; SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 225, n. 11, p. 1-14, 2021. Disponível em: < https://doi.org/10.1016/j.jpaa.2021.106741 > DOI: 10.1016/j.jpaa.2021.106741.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G.; MURAKAMI, Lúcia Satie Ikemoto; SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, New York, Elsevier, v. 621, p. 235-253, 2021. Disponível em: < https://doi.org/10.1016/j.laa.2021.03.023 > DOI: 10.1016/j.laa.2021.03.023.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, 621, 235-253. doi:10.1016/j.laa.2021.03.023
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.Available from: https://doi.org/10.1016/j.laa.2021.03.023
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.Available from: https://doi.org/10.1016/j.laa.2021.03.023
  • Source: Archiv der Mathematik. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZAICEV, Mikhail. Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, Cham, v. 116, n. 4, p. 413-421, 2021. Disponível em: < https://doi.org/10.1007/s00013-020-01567-9 > DOI: 10.1007/s00013-020-01567-9.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, 116( 4), 413-421. doi:10.1007/s00013-020-01567-9
    • NLM

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.Available from: https://doi.org/10.1007/s00013-020-01567-9
    • Vancouver

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.Available from: https://doi.org/10.1007/s00013-020-01567-9
  • Source: Algebra and Logic. Unidade: IME

    Subject: ÁLGEBRA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P; SHESTAKOV, Ivan P. Simple right-symmetric (1, 1)-superalgebras. Algebra and Logic, New York, v. 60, n. 2, p. 108-114, 2021. Disponível em: < https://doi.org/10.1007/s10469-021-09633-z > DOI: 10.1007/s10469-021-09633-z.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). Simple right-symmetric (1, 1)-superalgebras. Algebra and Logic, 60( 2), 108-114. doi:10.1007/s10469-021-09633-z
    • NLM

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1, 1)-superalgebras [Internet]. Algebra and Logic. 2021 ; 60( 2): 108-114.Available from: https://doi.org/10.1007/s10469-021-09633-z
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1, 1)-superalgebras [Internet]. Algebra and Logic. 2021 ; 60( 2): 108-114.Available from: https://doi.org/10.1007/s10469-021-09633-z
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ÁLGEBRAS DE JORDAN

    Available on 2022-10-30Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZAICEV, Mikhail. Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, Jerusalem, v. 245, p. 615–638, 2021. Disponível em: < https://doi.org/10.1007/s11856-021-2221-2 > DOI: 10.1007/s11856-021-2221-2.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, 245, 615–638. doi:10.1007/s11856-021-2221-2
    • NLM

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.Available from: https://doi.org/10.1007/s11856-021-2221-2
    • Vancouver

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.Available from: https://doi.org/10.1007/s11856-021-2221-2
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor; SHESTAKOV, Ivan P. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, New York, Elsevier, v. 574, p. 453-513, 2021. Disponível em: < https://doi.org/10.1016/j.jalgebra.2021.02.001 > DOI: 10.1016/j.jalgebra.2021.02.001.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2021). Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, 574, 453-513. doi:10.1016/j.jalgebra.2021.02.001
    • NLM

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
    • Vancouver

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
  • Source: Siberian Mathematical Journal. Unidade: IME

    Subject: ÁLGEBRA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P.; SHESTAKOV, Ivan P. On the right-symmetric algebras with a unital matrix subalgebra. Siberian Mathematical Journal, New York, v. 62, p. 138-147, 2021. Disponível em: < https://doi.org/10.1134/S0037446621010158 > DOI: 10.1134/S0037446621010158.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). On the right-symmetric algebras with a unital matrix subalgebra. Siberian Mathematical Journal, 62, 138-147. doi:10.1134/S0037446621010158
    • NLM

      Pozhidaev AP, Shestakov IP. On the right-symmetric algebras with a unital matrix subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.Available from: https://doi.org/10.1134/S0037446621010158
    • Vancouver

      Pozhidaev AP, Shestakov IP. On the right-symmetric algebras with a unital matrix subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.Available from: https://doi.org/10.1134/S0037446621010158
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Available on 2022-07-11Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G; MURAKAMI, Lúcia Satie Ikemoto; SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, New York, v. 49, n. 12, p. 5472-5482, 2021. Disponível em: < https://doi.org/10.1080/00927872.2021.1947310 > DOI: 10.1080/00927872.2021.1947310.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; SOKOLOV, Vladimir V. Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, Singapore, World Scientific, v. 20, n. art. 2150050, p. 1-24, 2021. Disponível em: < https://doi.org/10.1142/S021949882150050X > DOI: 10.1142/S021949882150050X.
    • APA

      Shestakov, I. P., & Sokolov, V. V. (2021). Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, 20( art. 2150050), 1-24. doi:10.1142/S021949882150050X
    • NLM

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.Available from: https://doi.org/10.1142/S021949882150050X
    • Vancouver

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.Available from: https://doi.org/10.1142/S021949882150050X
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, New York, v. 48, n. 12, p. 5412-5420, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1789652 > DOI: 10.1080/00927872.2020.1789652.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Source: Online seminar. Conference title: Lie and Jordan algebras and their representations : online seminar. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P. Coordination theorems for certain non-associative algebras. Anais.. São Paulo: IME-USP, 2020.
    • APA

      Shestakov, I. P. (2020). Coordination theorems for certain non-associative algebras. In Online seminar. São Paulo: IME-USP.
    • NLM

      Shestakov IP. Coordination theorems for certain non-associative algebras. Online seminar. 2020 ;((49 mi 50 seg.):
    • Vancouver

      Shestakov IP. Coordination theorems for certain non-associative algebras. Online seminar. 2020 ;((49 mi 50 seg.):
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale; SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, New York, v. 48, n. 7, p. 3091-3098, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1729363 > DOI: 10.1080/00927872.2020.1729363.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Glasgow Mathematical Journal. Conference title: Workshop on Nonassociative algebras and their applications. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ, Consuelo; SHESTAKOV, Ivan P. Jordan bimodules over the superalgebra M1|1. Glasgow Mathematical Journal[S.l: s.n.], 2020.Disponível em: DOI: 10.1017/S0017089519000247.
    • APA

      Martínez, C., & Shestakov, I. P. (2020). Jordan bimodules over the superalgebra M1|1. Glasgow Mathematical Journal. Cambridge: Cambridge University Press. doi:10.1017/S0017089519000247
    • NLM

      Martínez C, Shestakov IP. Jordan bimodules over the superalgebra M1|1 [Internet]. Glasgow Mathematical Journal. 2020 ; 62 S6-S13.Available from: https://doi.org/10.1017/S0017089519000247
    • Vancouver

      Martínez C, Shestakov IP. Jordan bimodules over the superalgebra M1|1 [Internet]. Glasgow Mathematical Journal. 2020 ; 62 S6-S13.Available from: https://doi.org/10.1017/S0017089519000247
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, DISTRIBUIÇÃO DE POISSON

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P; SHESTAKOV, Ivan P. Simple finite-dimensional modular noncommutative Jordan superalgebras. Journal of Pure and Applied Algebra, Amsterdam, v. 223, p. 2320-2344, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2018.07.017 > DOI: 10.1016/j.jpaa.2018.07.017.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2019). Simple finite-dimensional modular noncommutative Jordan superalgebras. Journal of Pure and Applied Algebra, 223, 2320-2344. doi:10.1016/j.jpaa.2018.07.017
    • NLM

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional modular noncommutative Jordan superalgebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223 2320-2344.Available from: http://dx.doi.org/10.1016/j.jpaa.2018.07.017
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional modular noncommutative Jordan superalgebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223 2320-2344.Available from: http://dx.doi.org/10.1016/j.jpaa.2018.07.017
  • Source: The Quarterly Journal of Mathematics. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOSTOVOY, Jacob; PEREZ-IZQUIERDO, José Maria; SHESTAKOV, Ivan P. On torsion-free nilpotent loops. The Quarterly Journal of Mathematics, Oxford, Oxford University Press (OUP), v. 70, n. 3, p. 1091-1104, 2019. Disponível em: < https://doi.org/10.1093/qmath/haz010 > DOI: 10.1093/qmath/haz010.
    • APA

      Mostovoy, J., Perez-Izquierdo, J. M., & Shestakov, I. P. (2019). On torsion-free nilpotent loops. The Quarterly Journal of Mathematics, 70( 3), 1091-1104. doi:10.1093/qmath/haz010
    • NLM

      Mostovoy J, Perez-Izquierdo JM, Shestakov IP. On torsion-free nilpotent loops [Internet]. The Quarterly Journal of Mathematics. 2019 ; 70( 3): 1091-1104.Available from: https://doi.org/10.1093/qmath/haz010
    • Vancouver

      Mostovoy J, Perez-Izquierdo JM, Shestakov IP. On torsion-free nilpotent loops [Internet]. The Quarterly Journal of Mathematics. 2019 ; 70( 3): 1091-1104.Available from: https://doi.org/10.1093/qmath/haz010

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022