Filtros : "CASTRO, TANIA TOME MARTINS DE" Limpar

Filtros



Refine with date range


  • Source: Revista Brasileira de Ensino de Física. Unidade: IF

    Subjects: SURTOS DE DOENÇAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Epidemic spreading. Revista Brasileira de Ensino de Física, São Paulo, v. 42, 2020. DOI: 10.1590/1806-9126-RBEF-2020-0259.
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2020). Epidemic spreading. Revista Brasileira de Ensino de Física, 42. doi:10.1590/1806-9126-RBEF-2020-0259
    • NLM

      Castro TTM de, Oliveira MJ de. Epidemic spreading. Revista Brasileira de Ensino de Física. 2020 ; 42
    • Vancouver

      Castro TTM de, Oliveira MJ de. Epidemic spreading. Revista Brasileira de Ensino de Física. 2020 ; 42
  • Source: Physical Review E. Unidades: IF, FFCLRP

    Subjects: TERMODINÂMICA (FÍSICO-QUÍMICA), DINÂMICA ESTOCÁSTICA, ENTROPIA, SPIN, FÍSICA DA MATÉRIA CONDENSADA, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Roberto da; OLIVEIRA, Mario J. de; TOME, Tania; FELÍCIO, J. R. Drugowich de. Analysis of earlier times and flux of entropy on the majority voter model with diffusion. Physical Review E, Maryland, 2020. Disponível em: < https://doi.org/10.1103/PhysRevE.101.012130 > DOI: 10.1103/PhysRevE.101.012130.
    • APA

      Silva, R. da, Oliveira, M. J. de, Tome, T., & Felício, J. R. D. de. (2020). Analysis of earlier times and flux of entropy on the majority voter model with diffusion. Physical Review E. doi:10.1103/PhysRevE.101.012130
    • NLM

      Silva R da, Oliveira MJ de, Tome T, Felício JRD de. Analysis of earlier times and flux of entropy on the majority voter model with diffusion [Internet]. Physical Review E. 2020 ;Available from: https://doi.org/10.1103/PhysRevE.101.012130
    • Vancouver

      Silva R da, Oliveira MJ de, Tome T, Felício JRD de. Analysis of earlier times and flux of entropy on the majority voter model with diffusion [Internet]. Physical Review E. 2020 ;Available from: https://doi.org/10.1103/PhysRevE.101.012130
  • Unidade: IF

    Subjects: EPIDEMIOLOGIA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; ZIFF, Robert M. On the critical behavior of the susceptible-infected-recovered (SIR) model on a square lattice. [S.l: s.n.], 2020.Disponível em: .
    • APA

      Castro, T. T. M. de, & Ziff, R. M. (2020). On the critical behavior of the susceptible-infected-recovered (SIR) model on a square lattice. São Paulo. Recuperado de https://arxiv.org/pdf/1006.2129.pdf
    • NLM

      Castro TTM de, Ziff RM. On the critical behavior of the susceptible-infected-recovered (SIR) model on a square lattice [Internet]. 2020 ;Available from: https://arxiv.org/pdf/1006.2129.pdf
    • Vancouver

      Castro TTM de, Ziff RM. On the critical behavior of the susceptible-infected-recovered (SIR) model on a square lattice [Internet]. 2020 ;Available from: https://arxiv.org/pdf/1006.2129.pdf
  • Unidade: IF

    Subjects: SURTOS DE DOENÇAS, EPIDEMIOLOGIA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Epidemic spreading. [S.l: s.n.], 2020.Disponível em: .
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2020). Epidemic spreading. São Paulo. Recuperado de https://arxiv.org/pdf/2012.13374.pdf
    • NLM

      Castro TTM de, Oliveira MJ de. Epidemic spreading [Internet]. 2020 ;Available from: https://arxiv.org/pdf/2012.13374.pdf
    • Vancouver

      Castro TTM de, Oliveira MJ de. Epidemic spreading [Internet]. 2020 ;Available from: https://arxiv.org/pdf/2012.13374.pdf
  • Source: Brazilian Journal of Physics. Unidade: IF

    Subjects: FÍSICA, EQUAÇÕES

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Stochastic Approach to Epidemic Spreading. Brazilian Journal of Physics, São Paulo, v. 50, p. 832–843, 2020. DOI: 10.1007/s13538-020-00800-8.
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2020). Stochastic Approach to Epidemic Spreading. Brazilian Journal of Physics, 50, 832–843. doi:10.1007/s13538-020-00800-8
    • NLM

      Castro TTM de, Oliveira MJ de. Stochastic Approach to Epidemic Spreading. Brazilian Journal of Physics. 2020 ; 50 832–843.
    • Vancouver

      Castro TTM de, Oliveira MJ de. Stochastic Approach to Epidemic Spreading. Brazilian Journal of Physics. 2020 ; 50 832–843.
  • Unidade: IF

    Subjects: MÉTODO DE MONTE CARLO, EPIDEMIOLOGIA, FÍSICA, EQUAÇÕES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Stochastic approach to epidemic spreading. [S.l: s.n.], 2020.Disponível em: .
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2020). Stochastic approach to epidemic spreading. São Paulo. Recuperado de https://arxiv.org/pdf/2009.03409.pdf
    • NLM

      Castro TTM de, Oliveira MJ de. Stochastic approach to epidemic spreading [Internet]. 2020 ;Available from: https://arxiv.org/pdf/2009.03409.pdf
    • Vancouver

      Castro TTM de, Oliveira MJ de. Stochastic approach to epidemic spreading [Internet]. 2020 ;Available from: https://arxiv.org/pdf/2009.03409.pdf
  • Source: Journal of Physics A: Mathematical and Theoretical. Unidade: IF

    Assunto: ENTROPIA

    PrivadoDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Oscar A; CASTRO, Tânia Tomé Martins de. The critical behavior of the entropy production in irreversible models with. Journal of Physics A: Mathematical and Theoretical, Bristol, v. 52, n. 38, p. 385002 (11p), 2019. DOI: 10.1088/1751-8121/ab2640.
    • APA

      Barbosa, O. A., & Castro, T. T. M. de. (2019). The critical behavior of the entropy production in irreversible models with. Journal of Physics A: Mathematical and Theoretical, 52( 38), 385002 (11p). doi:10.1088/1751-8121/ab2640
    • NLM

      Barbosa OA, Castro TTM de. The critical behavior of the entropy production in irreversible models with. Journal of Physics A: Mathematical and Theoretical. 2019 ; 52( 38): 385002 (11p).
    • Vancouver

      Barbosa OA, Castro TTM de. The critical behavior of the entropy production in irreversible models with. Journal of Physics A: Mathematical and Theoretical. 2019 ; 52( 38): 385002 (11p).
  • Source: Physica A: Statistical Mechanics and its Applications. Unidade: IF

    Subjects: MÉTODO DE MONTE CARLO, ECOLOGIA

    PrivadoDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUZISKA, Flavia M.; ARASHIRO, Everaldo; CASTRO, Tânia Tomé Martins de. Stochastic dynamics for two biological species and ecological niches. Physica A: Statistical Mechanics and its Applications, Amsterdam, v. 489, n. ja 2018, p. 56-64, 2018. DOI: 10.1016/j.physa.2017.07.016.
    • APA

      Ruziska, F. M., Arashiro, E., & Castro, T. T. M. de. (2018). Stochastic dynamics for two biological species and ecological niches. Physica A: Statistical Mechanics and its Applications, 489( ja 2018), 56-64. doi:10.1016/j.physa.2017.07.016
    • NLM

      Ruziska FM, Arashiro E, Castro TTM de. Stochastic dynamics for two biological species and ecological niches. Physica A: Statistical Mechanics and its Applications. 2018 ; 489( ja 2018): 56-64.
    • Vancouver

      Ruziska FM, Arashiro E, Castro TTM de. Stochastic dynamics for two biological species and ecological niches. Physica A: Statistical Mechanics and its Applications. 2018 ; 489( ja 2018): 56-64.
  • Source: Journal of Statistical Mechanics: Theory and Experiment. Unidade: IF

    Subjects: MÉTODO DE MONTE CARLO, PROCESSOS ESTOCÁSTICOS

    PrivadoDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Oscar A; CASTRO, Tânia Tomé Martins de. Entropy production in a Glauber–Ising irreversible model with dynamical competition. Journal of Statistical Mechanics: Theory and Experiment, Bristol, v. 2018, n. 063202, p. 1-13, 2018. DOI: 10.1088/1742-5468/aac141.
    • APA

      Barbosa, O. A., & Castro, T. T. M. de. (2018). Entropy production in a Glauber–Ising irreversible model with dynamical competition. Journal of Statistical Mechanics: Theory and Experiment, 2018( 063202), 1-13. doi:10.1088/1742-5468/aac141
    • NLM

      Barbosa OA, Castro TTM de. Entropy production in a Glauber–Ising irreversible model with dynamical competition. Journal of Statistical Mechanics: Theory and Experiment. 2018 ; 2018( 063202): 1-13.
    • Vancouver

      Barbosa OA, Castro TTM de. Entropy production in a Glauber–Ising irreversible model with dynamical competition. Journal of Statistical Mechanics: Theory and Experiment. 2018 ; 2018( 063202): 1-13.
  • Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA QUÂNTICA, TERMODINÂMICA, PROCESSOS ESTOCÁSTICOS QUÂNTICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Stochastic thermodynamics and entropy production of chemical reaction systems. [S.l: s.n.], 2018.Disponível em: .
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2018). Stochastic thermodynamics and entropy production of chemical reaction systems. São Paulo. Recuperado de https://arxiv.org/abs/1805.11605
    • NLM

      Castro TTM de, Oliveira MJ de. Stochastic thermodynamics and entropy production of chemical reaction systems [Internet]. 2018 ;Available from: https://arxiv.org/abs/1805.11605
    • Vancouver

      Castro TTM de, Oliveira MJ de. Stochastic thermodynamics and entropy production of chemical reaction systems [Internet]. 2018 ;Available from: https://arxiv.org/abs/1805.11605
  • Source: Journal of Chemical Physics. Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA QUÂNTICA, TERMODINÂMICA, PROCESSOS ESTOCÁSTICOS QUÂNTICOS

    Versão PublicadaDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Stochastic thermodynamics and entropy production of chemical reaction systems. Journal of Chemical Physics, Melville, v. 148, n. ju 2018, p. 224104, 2018. DOI: 10.1063/1.5037045.
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2018). Stochastic thermodynamics and entropy production of chemical reaction systems. Journal of Chemical Physics, 148( ju 2018), 224104. doi:10.1063/1.5037045
    • NLM

      Castro TTM de, Oliveira MJ de. Stochastic thermodynamics and entropy production of chemical reaction systems. Journal of Chemical Physics. 2018 ; 148( ju 2018): 224104.
    • Vancouver

      Castro TTM de, Oliveira MJ de. Stochastic thermodynamics and entropy production of chemical reaction systems. Journal of Chemical Physics. 2018 ; 148( ju 2018): 224104.
  • Source: Physica A: Statistical Mechanics and its Applications. Unidade: IF

    Subjects: MUDANÇA DE FASE, DIAGRAMA DE TRANSFORMAÇÃO DE FASE, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUZISKA, Flávia M; TOMÉ, Tânia; OLIVEIRA, Mário José de. Susceptible–infected–recovered model with recurrent infection. Physica A: Statistical Mechanics and its Applications, Amsterdam, v. 467, p. 21-29, 2017. Disponível em: < https://doi.org/10.1016/j.physa.2016.09.010 > DOI: 10.1016/j.physa.2016.09.010.
    • APA

      Ruziska, F. M., Tomé, T., & Oliveira, M. J. de. (2017). Susceptible–infected–recovered model with recurrent infection. Physica A: Statistical Mechanics and its Applications, 467, 21-29. doi:10.1016/j.physa.2016.09.010
    • NLM

      Ruziska FM, Tomé T, Oliveira MJ de. Susceptible–infected–recovered model with recurrent infection [Internet]. Physica A: Statistical Mechanics and its Applications. 2017 ; 467 21-29.Available from: https://doi.org/10.1016/j.physa.2016.09.010
    • Vancouver

      Ruziska FM, Tomé T, Oliveira MJ de. Susceptible–infected–recovered model with recurrent infection [Internet]. Physica A: Statistical Mechanics and its Applications. 2017 ; 467 21-29.Available from: https://doi.org/10.1016/j.physa.2016.09.010
  • Source: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. Unidade: IF

    Subjects: FÍSICA DA MATÉRIA CONDENSADA, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Ana T. C.; ASSIS, Vladimir R. V.; PINHO, Suani T. R.; OLIVEIRA, Mário José de; CASTRO, Tânia Tomé Martins de. Stochastic spatial structured model for vertically and horizontally transmitted infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, Amsterdam, v. fe 2017, p. 131-138, 2017. Disponível em: < http://www.sciencedirect.com/science/article/pii/S037843711630735X?via%3Dihub > DOI: 10.1016/j.physa.2016.10.048.
    • APA

      Silva, A. T. C., Assis, V. R. V., Pinho, S. T. R., Oliveira, M. J. de, & Castro, T. T. M. de. (2017). Stochastic spatial structured model for vertically and horizontally transmitted infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, fe 2017, 131-138. doi:10.1016/j.physa.2016.10.048
    • NLM

      Silva ATC, Assis VRV, Pinho STR, Oliveira MJ de, Castro TTM de. Stochastic spatial structured model for vertically and horizontally transmitted infection [Internet]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. 2017 ; fe 2017 131-138.Available from: http://www.sciencedirect.com/science/article/pii/S037843711630735X?via%3Dihub
    • Vancouver

      Silva ATC, Assis VRV, Pinho STR, Oliveira MJ de, Castro TTM de. Stochastic spatial structured model for vertically and horizontally transmitted infection [Internet]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. 2017 ; fe 2017 131-138.Available from: http://www.sciencedirect.com/science/article/pii/S037843711630735X?via%3Dihub
  • Source: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. Unidade: IF

    Subjects: IMUNIZAÇÃO, PERCOLAÇÃO

    PrivadoDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUZISKA, Flavia M.; CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Susceptible–infected–recovered model with recurrent infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, Amsterdam, v. fe 2017, p. 21-29, 2017. DOI: 10.1016/j.physa.2016.09.010.
    • APA

      Ruziska, F. M., Castro, T. T. M. de, & Oliveira, M. J. de. (2017). Susceptible–infected–recovered model with recurrent infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, fe 2017, 21-29. doi:10.1016/j.physa.2016.09.010
    • NLM

      Ruziska FM, Castro TTM de, Oliveira MJ de. Susceptible–infected–recovered model with recurrent infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. 2017 ; fe 2017 21-29.
    • Vancouver

      Ruziska FM, Castro TTM de, Oliveira MJ de. Susceptible–infected–recovered model with recurrent infection. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. 2017 ; fe 2017 21-29.
  • Source: Journal of Statistical Mechanics: Theory and Experiment. Unidade: IF

    Subjects: DINÂMICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARGOLO, C.; BARROS, P.; ARASHIRO, E.; et al. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape. Journal of Statistical Mechanics: Theory and Experiment, Bristol, v. 2016, p. 083204, 2016. Disponível em: < http://iopscience.iop.org/article/10.1088/1742-5468/2016/08/083204# > DOI: 10.1088/1742-5468/2016/08/083204.
    • APA

      Argolo, C., Barros, P., Arashiro, E., Gleria, I., Lyra, M. L., & Castro, T. T. M. de. (2016). Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape. Journal of Statistical Mechanics: Theory and Experiment, 2016, 083204. doi:10.1088/1742-5468/2016/08/083204
    • NLM

      Argolo C, Barros P, Arashiro E, Gleria I, Lyra ML, Castro TTM de. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape [Internet]. Journal of Statistical Mechanics: Theory and Experiment. 2016 ; 2016 083204.Available from: http://iopscience.iop.org/article/10.1088/1742-5468/2016/08/083204#
    • Vancouver

      Argolo C, Barros P, Arashiro E, Gleria I, Lyra ML, Castro TTM de. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape [Internet]. Journal of Statistical Mechanics: Theory and Experiment. 2016 ; 2016 083204.Available from: http://iopscience.iop.org/article/10.1088/1742-5468/2016/08/083204#
  • Source: Posters - Resumo. Conference titles: Encontro de Física. Unidade: IF

    Subjects: FÍSICA DA MATÉRIA CONDENSADA, PROCESSOS ESTOCÁSTICOS, MÉTODO DE MONTE CARLO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HIRATA, Flávia Mayumi Ruziska; TOMÉ, Tânia. Susceptible-Infected-Recovered (SIR) model with spontaneous recovery. Anais.. São Paulo: SBF, 2016.Disponível em: .
    • APA

      Hirata, F. M. R., & Tomé, T. (2016). Susceptible-Infected-Recovered (SIR) model with spontaneous recovery. In Posters - Resumo. São Paulo: SBF. Recuperado de http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0600-1.pdf
    • NLM

      Hirata FMR, Tomé T. Susceptible-Infected-Recovered (SIR) model with spontaneous recovery [Internet]. Posters - Resumo. 2016 ;Available from: http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0600-1.pdf
    • Vancouver

      Hirata FMR, Tomé T. Susceptible-Infected-Recovered (SIR) model with spontaneous recovery [Internet]. Posters - Resumo. 2016 ;Available from: http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0600-1.pdf
  • Source: Posters - Resumo. Conference titles: Encontro de Física. Unidade: IF

    Subjects: FÍSICA DA MATÉRIA CONDENSADA, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Ana Tereza Costa e; ASSIS, Vladimir Ramos Vitorino de; PINHO, Suani Tavares Rubim de; TOMÉ, Tânia; OLIVEIRA, Mário José de. Stochastic model describing vertically and horizontally transmitted infection. Anais.. São Paulo: SBF, 2016.Disponível em: .
    • APA

      Silva, A. T. C. e, Assis, V. R. V. de, Pinho, S. T. R. de, Tomé, T., & Oliveira, M. J. de. (2016). Stochastic model describing vertically and horizontally transmitted infection. In Posters - Resumo. São Paulo: SBF. Recuperado de http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0927-1.pdf
    • NLM

      Silva ATC e, Assis VRV de, Pinho STR de, Tomé T, Oliveira MJ de. Stochastic model describing vertically and horizontally transmitted infection [Internet]. Posters - Resumo. 2016 ;Available from: http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0927-1.pdf
    • Vancouver

      Silva ATC e, Assis VRV de, Pinho STR de, Tomé T, Oliveira MJ de. Stochastic model describing vertically and horizontally transmitted infection [Internet]. Posters - Resumo. 2016 ;Available from: http://www1.sbfisica.org.br/eventos/enf/2016/sys/resumos/R0927-1.pdf
  • Source: JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WADA, Alexander Hideki Oniwa; CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Critical properties of the susceptible-exposed-infected model on a square lattice. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, Bristol, v. 2015, n. 4, p. P04014, 2015. Disponível em: < http://iopscience.iop.org/1742-5468/2015/4/P04014/article?fromSearchPage=true > DOI: 10.1088/1742-5468/2015/04/p04014.
    • APA

      Wada, A. H. O., Castro, T. T. M. de, & Oliveira, M. J. de. (2015). Critical properties of the susceptible-exposed-infected model on a square lattice. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015( 4), P04014. doi:10.1088/1742-5468/2015/04/p04014
    • NLM

      Wada AHO, Castro TTM de, Oliveira MJ de. Critical properties of the susceptible-exposed-infected model on a square lattice [Internet]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2015 ; 2015( 4): P04014.Available from: http://iopscience.iop.org/1742-5468/2015/4/P04014/article?fromSearchPage=true
    • Vancouver

      Wada AHO, Castro TTM de, Oliveira MJ de. Critical properties of the susceptible-exposed-infected model on a square lattice [Internet]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2015 ; 2015( 4): P04014.Available from: http://iopscience.iop.org/1742-5468/2015/4/P04014/article?fromSearchPage=true
  • Unidade: IF

    Subjects: TERMODINÂMICA, PARAMAGNETISMO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANDI, Gabriel Teixeira; CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Entropy production in linear langevin systems. [S.l: s.n.], 2015.
    • APA

      Landi, G. T., Castro, T. T. M. de, & Oliveira, M. J. de. (2015). Entropy production in linear langevin systems. São Paulo.
    • NLM

      Landi GT, Castro TTM de, Oliveira MJ de. Entropy production in linear langevin systems. 2015 ;
    • Vancouver

      Landi GT, Castro TTM de, Oliveira MJ de. Entropy production in linear langevin systems. 2015 ;
  • Unidade: IF

    Subjects: TERMODINÂMICA, PARAMAGNETISMO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Tânia Tomé Martins de; OLIVEIRA, Mário José de. Stochastic approach to equilibrium and nonequilibrium thermodynamics. [S.l: s.n.], 2015.
    • APA

      Castro, T. T. M. de, & Oliveira, M. J. de. (2015). Stochastic approach to equilibrium and nonequilibrium thermodynamics. São Paulo.
    • NLM

      Castro TTM de, Oliveira MJ de. Stochastic approach to equilibrium and nonequilibrium thermodynamics. 2015 ;
    • Vancouver

      Castro TTM de, Oliveira MJ de. Stochastic approach to equilibrium and nonequilibrium thermodynamics. 2015 ;

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021