Filters : "CAMARGO, PEDRO HENRIQUE CURY" Limpar

Filters



Refine with date range


  • Source: ChemistrySelect. Unidade: IQ

    Subjects: LÍQUIDOS IÔNICOS, ELETRÓLITOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMIREZ, Nedher Sanchez et al. Four phosphonium-based ionic liquids. Synthesis, characterization and electrochemical performance as electrolytes for silicon anodes. ChemistrySelect, v. 7, p. 1-10 art. e202104430, 2022Tradução . . Disponível em: https://dx.doi.org/10.1002/slct.202104430. Acesso em: 06 dez. 2022.
    • APA

      Ramirez, N. S., Monje, I. E., Martins, V. L., Bélanger, D., Camargo, P. H. C. de, & Torresi, R. M. (2022). Four phosphonium-based ionic liquids. Synthesis, characterization and electrochemical performance as electrolytes for silicon anodes. ChemistrySelect, 7, 1-10 art. e202104430. doi:10.1002/slct.202104430
    • NLM

      Ramirez NS, Monje IE, Martins VL, Bélanger D, Camargo PHC de, Torresi RM. Four phosphonium-based ionic liquids. Synthesis, characterization and electrochemical performance as electrolytes for silicon anodes [Internet]. ChemistrySelect. 2022 ; 7 1-10 art. e202104430.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1002/slct.202104430
    • Vancouver

      Ramirez NS, Monje IE, Martins VL, Bélanger D, Camargo PHC de, Torresi RM. Four phosphonium-based ionic liquids. Synthesis, characterization and electrochemical performance as electrolytes for silicon anodes [Internet]. ChemistrySelect. 2022 ; 7 1-10 art. e202104430.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1002/slct.202104430
  • Source: Microchimica Acta. Unidade: IQ

    Subjects: VOLTAMETRIA, FLAVONOIDES, HEMATITA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Gabriel Junquetti et al. A photoelectrochemical enzyme biosensor based on functionalized hematite microcubes for rutin determination by square-wave voltammetry. Microchimica Acta, v. 188, p. 1-11 art. 28, 2021Tradução . . Disponível em: http://dx.doi.org/10.1007/s00604-020-04659-z. Acesso em: 06 dez. 2022.
    • APA

      Mattos, G. J., Salamanca Neto, C. A. R., Barbosa, E. C. M., Camargo, P. H. C. de, Dekker, R. F. H., Dekker, A. M. B., & Sartori, E. R. (2021). A photoelectrochemical enzyme biosensor based on functionalized hematite microcubes for rutin determination by square-wave voltammetry. Microchimica Acta, 188, 1-11 art. 28. doi:10.1007/s00604-020-04659-z
    • NLM

      Mattos GJ, Salamanca Neto CAR, Barbosa ECM, Camargo PHC de, Dekker RFH, Dekker AMB, Sartori ER. A photoelectrochemical enzyme biosensor based on functionalized hematite microcubes for rutin determination by square-wave voltammetry [Internet]. Microchimica Acta. 2021 ; 188 1-11 art. 28.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1007/s00604-020-04659-z
    • Vancouver

      Mattos GJ, Salamanca Neto CAR, Barbosa ECM, Camargo PHC de, Dekker RFH, Dekker AMB, Sartori ER. A photoelectrochemical enzyme biosensor based on functionalized hematite microcubes for rutin determination by square-wave voltammetry [Internet]. Microchimica Acta. 2021 ; 188 1-11 art. 28.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1007/s00604-020-04659-z
  • Source: ACS Catalysis. Unidade: IQ

    Subjects: CATÁLISE, LIPASE, MATERIAIS NANOESTRUTURADOS, NANOTECNOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Heloise Ribeiro de et al. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, v. 11, p. 414−423, 2021Tradução . . Disponível em: http://dx.doi.org/10.1021/acscatal.0c04919. Acesso em: 06 dez. 2022.
    • APA

      Barros, H. R. de, Camargo, P. H. C. de, García, I., Kuttner, C., Zeballos, N., Torresi, S. I. C. de, et al. (2021). Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, 11, 414−423. doi:10.1021/acscatal.0c04919
    • NLM

      Barros HR de, Camargo PHC de, García I, Kuttner C, Zeballos N, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1021/acscatal.0c04919
    • Vancouver

      Barros HR de, Camargo PHC de, García I, Kuttner C, Zeballos N, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1021/acscatal.0c04919
  • Source: Journal of Electroanalytical Chemistry. Unidade: IQ

    Subjects: CARBONO, NITROGÊNIO, ELETRODO, ELETROQUÍMICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONJE, Ivonne E et al. In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, v. 901, p. 1-11 art. 115732, 2021Tradução . . Disponível em: https://dx.doi.org/10.1016/j.jelechem.2021.115732. Acesso em: 06 dez. 2022.
    • APA

      Monje, I. E., Ramirez, N. S., Santagnelic, S. H., Camargo, P. H. C. de, Bélangere, D., Schougaard, S. B., & Torresi, R. M. (2021). In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 901, 1-11 art. 115732. doi:10.1016/j.jelechem.2021.115732
    • NLM

      Monje IE, Ramirez NS, Santagnelic SH, Camargo PHC de, Bélangere D, Schougaard SB, Torresi RM. In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries [Internet]. Journal of Electroanalytical Chemistry. 2021 ; 901 1-11 art. 115732.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1016/j.jelechem.2021.115732
    • Vancouver

      Monje IE, Ramirez NS, Santagnelic SH, Camargo PHC de, Bélangere D, Schougaard SB, Torresi RM. In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries [Internet]. Journal of Electroanalytical Chemistry. 2021 ; 901 1-11 art. 115732.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1016/j.jelechem.2021.115732
  • Source: ACS Sustainable Chemistry and Engineering. Unidade: IQ

    Subjects: NANOPARTÍCULAS, OURO, FOTOCATÁLISE

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUIROZ, Jhon et al. Bringing earth-abundant plasmonic catalysis to light: gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites. ACS Sustainable Chemistry and Engineering, v. 9, n. 29, p. 9750–9760, 2021Tradução . . Disponível em: https://dx.doi.org/10.1021/acssuschemeng.1c02063. Acesso em: 06 dez. 2022.
    • APA

      Quiroz, J., Oliveira, P. F. M. de, Shetty, S., Oropeza, F. E., O’Shea, V. A. de la P., Rodrigues, L. C. V., et al. (2021). Bringing earth-abundant plasmonic catalysis to light: gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites. ACS Sustainable Chemistry and Engineering, 9( 29), 9750–9760. doi:10.1021/acssuschemeng.1c02063
    • NLM

      Quiroz J, Oliveira PFM de, Shetty S, Oropeza FE, O’Shea VA de la P, Rodrigues LCV, Rodrigues MP de S, Torresi RM, Emmerling F, Camargo PHC de. Bringing earth-abundant plasmonic catalysis to light: gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites [Internet]. ACS Sustainable Chemistry and Engineering. 2021 ; 9( 29): 9750–9760.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1021/acssuschemeng.1c02063
    • Vancouver

      Quiroz J, Oliveira PFM de, Shetty S, Oropeza FE, O’Shea VA de la P, Rodrigues LCV, Rodrigues MP de S, Torresi RM, Emmerling F, Camargo PHC de. Bringing earth-abundant plasmonic catalysis to light: gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites [Internet]. ACS Sustainable Chemistry and Engineering. 2021 ; 9( 29): 9750–9760.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1021/acssuschemeng.1c02063
  • Source: Advanced Functional Materials. Unidade: IQ

    Subjects: ELETROQUÍMICA, CATALISADORES, NANOPARTÍCULAS, HIDROGÊNIO, OURO, PRATA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MO, Jiaying et al. Atomic-precision tailoring of Au–Ag core–shell composite nanoparticles for direct electrochemical-plasmonic hydrogen evolution in water splitting. Advanced Functional Materials, p. 1-11 art. 2102517, 2021Tradução . . Disponível em: https://dx.doi.org/ 10.1002/adfm.202102517. Acesso em: 06 dez. 2022.
    • APA

      Mo, J., Barbosa, E. C. M., Wu, S., Li, Y., Sun, Y., Xiang, W., et al. (2021). Atomic-precision tailoring of Au–Ag core–shell composite nanoparticles for direct electrochemical-plasmonic hydrogen evolution in water splitting. Advanced Functional Materials, 1-11 art. 2102517. doi:10.1002/adfm.202102517
    • NLM

      Mo J, Barbosa ECM, Wu S, Li Y, Sun Y, Xiang W, Li T, Pu S, Robertson A, Wu T-sing, Soo Y-liang, Alves TV, Camargo PHC de, Kuo WC-H, Tsang SCE. Atomic-precision tailoring of Au–Ag core–shell composite nanoparticles for direct electrochemical-plasmonic hydrogen evolution in water splitting [Internet]. Advanced Functional Materials. 2021 ; 1-11 art. 2102517.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/ 10.1002/adfm.202102517
    • Vancouver

      Mo J, Barbosa ECM, Wu S, Li Y, Sun Y, Xiang W, Li T, Pu S, Robertson A, Wu T-sing, Soo Y-liang, Alves TV, Camargo PHC de, Kuo WC-H, Tsang SCE. Atomic-precision tailoring of Au–Ag core–shell composite nanoparticles for direct electrochemical-plasmonic hydrogen evolution in water splitting [Internet]. Advanced Functional Materials. 2021 ; 1-11 art. 2102517.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/ 10.1002/adfm.202102517
  • Source: ACS Catalysis. Unidades: IQ, ESALQ

    Subjects: NANOPARTÍCULAS, OURO, HIDROGÊNIO

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Maria Paula de Souza et al. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, v. 11, n. 21, p. 13543−13555, 2021Tradução . . Disponível em: https://dx.doi.org/10.1021/acscatal.1c02938. Acesso em: 06 dez. 2022.
    • APA

      Rodrigues, M. P. de S., Dourado, A. H. B., Cutolo, L. de O., Parreira, L. S., Alves, T. V., Slater, T. J. A., et al. (2021). Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, 11( 21), 13543−13555. doi:10.1021/acscatal.1c02938
    • NLM

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1021/acscatal.1c02938
    • Vancouver

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1021/acscatal.1c02938
  • Source: International Journal of Hydrogen Energy. Unidades: IPEN, IQ

    Subjects: MONÓXIDO DE CARBONO, NANOPARTÍCULAS, CATALISADORES, OXIDAÇÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTONIASSI, Rodolfo Molina et al. One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures. International Journal of Hydrogen Energy, v. 46, n. 34, p. 17751-17762, 2021Tradução . . Disponível em: http://dx.doi.org/10.1016/j.ijhydene.2021.02.192. Acesso em: 06 dez. 2022.
    • APA

      Antoniassi, R. M., Machado, A. P., Paiva, A. R. N., Queiroz, C. M. S., Vaz, J. M., Spinacé, E. V., et al. (2021). One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures. International Journal of Hydrogen Energy, 46( 34), 17751-17762. doi:10.1016/j.ijhydene.2021.02.192
    • NLM

      Antoniassi RM, Machado AP, Paiva ARN, Queiroz CMS, Vaz JM, Spinacé EV, Silva JCM, Carmine E, Camargo PHC de, Torresi RM. One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures [Internet]. International Journal of Hydrogen Energy. 2021 ; 46( 34): 17751-17762.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.ijhydene.2021.02.192
    • Vancouver

      Antoniassi RM, Machado AP, Paiva ARN, Queiroz CMS, Vaz JM, Spinacé EV, Silva JCM, Carmine E, Camargo PHC de, Torresi RM. One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures [Internet]. International Journal of Hydrogen Energy. 2021 ; 46( 34): 17751-17762.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.ijhydene.2021.02.192
  • Source: ChemCatChem. Unidades: IPEN, IQ

    Subjects: CÉLULAS A COMBUSTÍVEL, NANOPARTÍCULAS, ELETROCATÁLISE, CATALISADORES

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTONIASSI, Rodolfo Molina et al. Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 Nanocubes onto carbon supports. ChemCatChem, v. 13, n. 8, p. 1931-1939, 2021Tradução . . Disponível em: https://dx.doi.org/10.1002/cctc.202002066. Acesso em: 06 dez. 2022.
    • APA

      Antoniassi, R. M., Quiroz, J., Barbosa, E. C. M., Parreira, L. S., Isidoro, R. A., Spinacé, E. V., et al. (2021). Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 Nanocubes onto carbon supports. ChemCatChem, 13( 8), 1931-1939. doi:10.1002/cctc.202002066
    • NLM

      Antoniassi RM, Quiroz J, Barbosa ECM, Parreira LS, Isidoro RA, Spinacé EV, Silva JCM, Camargo PHC de. Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 Nanocubes onto carbon supports [Internet]. ChemCatChem. 2021 ; 13( 8): 1931-1939.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1002/cctc.202002066
    • Vancouver

      Antoniassi RM, Quiroz J, Barbosa ECM, Parreira LS, Isidoro RA, Spinacé EV, Silva JCM, Camargo PHC de. Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 Nanocubes onto carbon supports [Internet]. ChemCatChem. 2021 ; 13( 8): 1931-1939.[citado 2022 dez. 06 ] Available from: https://dx.doi.org/10.1002/cctc.202002066
  • Source: ACS Applied Nano Materials. Unidade: IQ

    Subjects: NANOPARTÍCULAS, TROCA IÔNICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Arthur Bonfá et al. Recoverable and reusable polymer microbead-supported metal nanocatalysts for redox chemical transformations. ACS Applied Nano Materials, v. 3, p. 1722−1730, 2020Tradução . . Disponível em: http://dx.doi.org/10.1021/acsanm.9b02433. Acesso em: 06 dez. 2022.
    • APA

      Fernandes, A. B., Pavliuk, M. V., Paun, C., Carvalho, A. C., Nomura, C. S., Lewin, E., et al. (2020). Recoverable and reusable polymer microbead-supported metal nanocatalysts for redox chemical transformations. ACS Applied Nano Materials, 3, 1722−1730. doi:10.1021/acsanm.9b02433
    • NLM

      Fernandes AB, Pavliuk MV, Paun C, Carvalho AC, Nomura CS, Lewin E, Lindblad R, Camargo PHC de, Sa J, Bastos EL. Recoverable and reusable polymer microbead-supported metal nanocatalysts for redox chemical transformations [Internet]. ACS Applied Nano Materials. 2020 ; 3 1722−1730.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1021/acsanm.9b02433
    • Vancouver

      Fernandes AB, Pavliuk MV, Paun C, Carvalho AC, Nomura CS, Lewin E, Lindblad R, Camargo PHC de, Sa J, Bastos EL. Recoverable and reusable polymer microbead-supported metal nanocatalysts for redox chemical transformations [Internet]. ACS Applied Nano Materials. 2020 ; 3 1722−1730.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1021/acsanm.9b02433
  • Source: Applied Catalysis B. Unidade: IQ

    Subjects: NANOPARTÍCULAS, OURO, CATÁLISE, AMINAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORIO, Jhonatan Luiz et al. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B, v. 267, p. 1-7 art. 118728, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.apcatb.2020.118728. Acesso em: 06 dez. 2022.
    • APA

      Fiorio, J. L., Araújo, T. P., Barbosa, E. C. M., Quiroz, J., Camargo, P. H. C. de, Rudolph, M., et al. (2020). Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B, 267, 1-7 art. 118728. doi:10.1016/j.apcatb.2020.118728
    • NLM

      Fiorio JL, Araújo TP, Barbosa ECM, Quiroz J, Camargo PHC de, Rudolph M, Hashmi ASK, Rossi LM. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source [Internet]. Applied Catalysis B. 2020 ; 267 1-7 art. 118728.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.118728
    • Vancouver

      Fiorio JL, Araújo TP, Barbosa ECM, Quiroz J, Camargo PHC de, Rudolph M, Hashmi ASK, Rossi LM. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source [Internet]. Applied Catalysis B. 2020 ; 267 1-7 art. 118728.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.118728
  • Source: Journal of the Brazilian Chemical Society. Unidade: IQ

    Subjects: NANOCOMPOSITOS, FOTOQUÍMICA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TEIXEIRA, Ivo Freitas et al. An overview of the photocatalytic H-2 evolution by semiconductor-based materials for nonspecialists. Journal of the Brazilian Chemical Society, v. 31, n. 4, p. 211-229, 2020Tradução . . Disponível em: http://dx.doi.org/10.21577/0103-5053.20190255. Acesso em: 06 dez. 2022.
    • APA

      Teixeira, I. F., Quiroz, J., Homsi, M. S., & Camargo, P. H. C. de. (2020). An overview of the photocatalytic H-2 evolution by semiconductor-based materials for nonspecialists. Journal of the Brazilian Chemical Society, 31( 4), 211-229. doi:10.21577/0103-5053.20190255
    • NLM

      Teixeira IF, Quiroz J, Homsi MS, Camargo PHC de. An overview of the photocatalytic H-2 evolution by semiconductor-based materials for nonspecialists [Internet]. Journal of the Brazilian Chemical Society. 2020 ; 31( 4): 211-229.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.21577/0103-5053.20190255
    • Vancouver

      Teixeira IF, Quiroz J, Homsi MS, Camargo PHC de. An overview of the photocatalytic H-2 evolution by semiconductor-based materials for nonspecialists [Internet]. Journal of the Brazilian Chemical Society. 2020 ; 31( 4): 211-229.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.21577/0103-5053.20190255
  • Source: Nanomaterials. Unidade: IQ

    Subjects: ELÉTRONS, FOTOCATÁLISE

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TEIXEIRA, Ivo Freitas et al. Hot electrons, hot holes, or both? tandem synthesis of imines driven by the plasmonic excitation in Au/CeO2 nanorods. Nanomaterials, v. 10, p. 1-10 art. 1530, 2020Tradução . . Disponível em: http://dx.doi.org/10.3390/nano10081530. Acesso em: 06 dez. 2022.
    • APA

      Teixeira, I. F., Homsi, M. S., Geonmonond, R. S., Rocha, G. F. S. R., Peng, Y. -K., Silva, I. F., et al. (2020). Hot electrons, hot holes, or both? tandem synthesis of imines driven by the plasmonic excitation in Au/CeO2 nanorods. Nanomaterials, 10, 1-10 art. 1530. doi:10.3390/nano10081530
    • NLM

      Teixeira IF, Homsi MS, Geonmonond RS, Rocha GFSR, Peng Y-K, Silva IF, Quiroz J, Camargo PHC de. Hot electrons, hot holes, or both? tandem synthesis of imines driven by the plasmonic excitation in Au/CeO2 nanorods [Internet]. Nanomaterials. 2020 ; 10 1-10 art. 1530.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.3390/nano10081530
    • Vancouver

      Teixeira IF, Homsi MS, Geonmonond RS, Rocha GFSR, Peng Y-K, Silva IF, Quiroz J, Camargo PHC de. Hot electrons, hot holes, or both? tandem synthesis of imines driven by the plasmonic excitation in Au/CeO2 nanorods [Internet]. Nanomaterials. 2020 ; 10 1-10 art. 1530.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.3390/nano10081530
  • Source: Electrochimica Acta. Unidade: IQ

    Subjects: NANOCOMPOSITOS, TUNGSTÊNIO

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AQUINO, Caroline B. de et al. Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3NW/PAni nanocomposites to improve performance as supercapacitor?. Electrochimica Acta, v. 356, p. 1-10 art. 136786, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.electacta.2020.136786. Acesso em: 06 dez. 2022.
    • APA

      Aquino, C. B. de, Nagaoka, D. A., Machado, M. M., Candido, E. G., Silva, A. G. M. da, Camargo, P. H. C. de, & Domingues, S. H. (2020). Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3NW/PAni nanocomposites to improve performance as supercapacitor? Electrochimica Acta, 356, 1-10 art. 136786. doi:10.1016/j.electacta.2020.136786
    • NLM

      Aquino CB de, Nagaoka DA, Machado MM, Candido EG, Silva AGM da, Camargo PHC de, Domingues SH. Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3NW/PAni nanocomposites to improve performance as supercapacitor? [Internet]. Electrochimica Acta. 2020 ; 356 1-10 art. 136786.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.electacta.2020.136786
    • Vancouver

      Aquino CB de, Nagaoka DA, Machado MM, Candido EG, Silva AGM da, Camargo PHC de, Domingues SH. Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3NW/PAni nanocomposites to improve performance as supercapacitor? [Internet]. Electrochimica Acta. 2020 ; 356 1-10 art. 136786.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.electacta.2020.136786
  • Source: Chemical Communications. Unidade: IQ

    Subjects: ESPECTROSCOPIA, NANOPARTÍCULAS, OURO

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Paulo Filho Marques de et al. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chemical Communications, v. 56, p. 10329-10332, 2020Tradução . . Disponível em: http://dx.doi.org/10.1039/d0cc03862h. Acesso em: 06 dez. 2022.
    • APA

      Oliveira, P. F. M. de, Michalchuk, A. A. L., Buzanich, A. G., Bienert, R., Torresi, R. M., Camargo, P. H. C. de, & Emmerling, F. (2020). Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chemical Communications, 56, 10329-10332. doi:10.1039/d0cc03862h
    • NLM

      Oliveira PFM de, Michalchuk AAL, Buzanich AG, Bienert R, Torresi RM, Camargo PHC de, Emmerling F. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis [Internet]. Chemical Communications. 2020 ; 56 10329-10332.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0cc03862h
    • Vancouver

      Oliveira PFM de, Michalchuk AAL, Buzanich AG, Bienert R, Torresi RM, Camargo PHC de, Emmerling F. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis [Internet]. Chemical Communications. 2020 ; 56 10329-10332.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0cc03862h
  • Source: Nanoscale. Unidade: IQ

    Subjects: CATALISADORES, ENERGIA SOLAR

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Isabel C. de et al. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, v. 12, p. 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23), 2020Tradução . . Disponível em: http://dx.doi.org/10.1039/d0nr01875a. Acesso em: 06 dez. 2022.
    • APA

      Freitas, I. C. de, Novaes, B. A., Mou, T., Alves, T. V., Quiroz, J., Wang, Y. -C., et al. (2020). Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, 12, 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23). doi:10.1039/d0nr01875a
    • NLM

      Freitas IC de, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de, Parreira LS, Barbosa ECM. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0nr01875a
    • Vancouver

      Freitas IC de, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de, Parreira LS, Barbosa ECM. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0nr01875a
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: NANOPARTÍCULAS, METAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Paulo Filho Marques de et al. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. Journal of Materials Chemistry A, v. 8, p. 16114–16141, 2020Tradução . . Disponível em: http://dx.doi.org/10.1039/d0ta05183g. Acesso em: 06 dez. 2022.
    • APA

      Oliveira, P. F. M. de, Torresi, R. M., Emmerling, F., & Camargo, P. H. C. de. (2020). Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. Journal of Materials Chemistry A, 8, 16114–16141. doi:10.1039/d0ta05183g
    • NLM

      Oliveira PFM de, Torresi RM, Emmerling F, Camargo PHC de. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles [Internet]. Journal of Materials Chemistry A. 2020 ; 8 16114–16141.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0ta05183g
    • Vancouver

      Oliveira PFM de, Torresi RM, Emmerling F, Camargo PHC de. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles [Internet]. Journal of Materials Chemistry A. 2020 ; 8 16114–16141.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1039/d0ta05183g
  • Source: Applied Catalysis B. Unidade: IQ

    Subjects: NIÓBIO, COMPOSTOS FENÓLICOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TELES, Camila A et al. Role of the metal-support interface in the hydrodeoxygenation reaction of phenol. Applied Catalysis B, v. 277, p. 1-13 art. 119238, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.apcatb.2020.119238. Acesso em: 06 dez. 2022.
    • APA

      Teles, C. A., Rabelo-Neto, R. C., Duong, N., Quiroz, J., Camargo, P. H. C. de, Jacobs, G., et al. (2020). Role of the metal-support interface in the hydrodeoxygenation reaction of phenol. Applied Catalysis B, 277, 1-13 art. 119238. doi:10.1016/j.apcatb.2020.119238
    • NLM

      Teles CA, Rabelo-Neto RC, Duong N, Quiroz J, Camargo PHC de, Jacobs G, Resasco DE, Noronha FB. Role of the metal-support interface in the hydrodeoxygenation reaction of phenol [Internet]. Applied Catalysis B. 2020 ; 277 1-13 art. 119238.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.119238
    • Vancouver

      Teles CA, Rabelo-Neto RC, Duong N, Quiroz J, Camargo PHC de, Jacobs G, Resasco DE, Noronha FB. Role of the metal-support interface in the hydrodeoxygenation reaction of phenol [Internet]. Applied Catalysis B. 2020 ; 277 1-13 art. 119238.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.119238
  • Source: Applied Catalysis B. Unidade: IQ

    Subjects: CATALISADORES, OXIGÊNIO

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. PdPt-TiO2 nanowires: correlating composition, electronic effects and Ovacancies with activities towards water splitting and oxygen reduction. Applied Catalysis B, v. 277, p. 1-10 art. 119177 : + Supplementary materials ( S1-S8), 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.apcatb.2020.119177. Acesso em: 06 dez. 2022.
    • APA

      Silva, A. G. M. da, Fernandes, C. G., Hood, Z. D., Peng, R., Wu, Z., Dourado, A. H. B., et al. (2020). PdPt-TiO2 nanowires: correlating composition, electronic effects and Ovacancies with activities towards water splitting and oxygen reduction. Applied Catalysis B, 277, 1-10 art. 119177 : + Supplementary materials ( S1-S8). doi:10.1016/j.apcatb.2020.119177
    • NLM

      Silva AGM da, Fernandes CG, Hood ZD, Peng R, Wu Z, Dourado AHB, Parreira LS, Oliveira DC de, Camargo PHC de, Torresi SIC de. PdPt-TiO2 nanowires: correlating composition, electronic effects and Ovacancies with activities towards water splitting and oxygen reduction [Internet]. Applied Catalysis B. 2020 ; 277 1-10 art. 119177 : + Supplementary materials ( S1-S8).[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.119177
    • Vancouver

      Silva AGM da, Fernandes CG, Hood ZD, Peng R, Wu Z, Dourado AHB, Parreira LS, Oliveira DC de, Camargo PHC de, Torresi SIC de. PdPt-TiO2 nanowires: correlating composition, electronic effects and Ovacancies with activities towards water splitting and oxygen reduction [Internet]. Applied Catalysis B. 2020 ; 277 1-10 art. 119177 : + Supplementary materials ( S1-S8).[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.apcatb.2020.119177
  • Source: Food Chemistry. Unidade: IQ

    Subjects: NANOPARTÍCULAS, VOLTAMETRIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALAMANCA NETO, Carlos Alberto Rossi et al. Chemometric-assisted construction of a biosensing device to measure chlorogenic acid content in brewed coffee beverages to discriminate quality. Food Chemistry, v. 315, p. 1-9 art. 126306, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.foodchem.2020.126306. Acesso em: 06 dez. 2022.
    • APA

      Salamanca Neto, C. A. R., Marcheafave, G. G., Scremin, J., Barbosa, E. C. M., Camargo, P. H. C. de, Dekker, R. F. H., et al. (2020). Chemometric-assisted construction of a biosensing device to measure chlorogenic acid content in brewed coffee beverages to discriminate quality. Food Chemistry, 315, 1-9 art. 126306. doi:10.1016/j.foodchem.2020.126306
    • NLM

      Salamanca Neto CAR, Marcheafave GG, Scremin J, Barbosa ECM, Camargo PHC de, Dekker RFH, Scarmínio IS, Dekker AMB, Sartori ER. Chemometric-assisted construction of a biosensing device to measure chlorogenic acid content in brewed coffee beverages to discriminate quality [Internet]. Food Chemistry. 2020 ; 315 1-9 art. 126306.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.foodchem.2020.126306
    • Vancouver

      Salamanca Neto CAR, Marcheafave GG, Scremin J, Barbosa ECM, Camargo PHC de, Dekker RFH, Scarmínio IS, Dekker AMB, Sartori ER. Chemometric-assisted construction of a biosensing device to measure chlorogenic acid content in brewed coffee beverages to discriminate quality [Internet]. Food Chemistry. 2020 ; 315 1-9 art. 126306.[citado 2022 dez. 06 ] Available from: http://dx.doi.org/10.1016/j.foodchem.2020.126306

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022