Filtros : "TOMITA, ARTUR HIDEYUKI" "Polônia" Removidos: "Nova Zelândia" "kz" Limpar

Filtros



Refine with date range


  • Source: Fundamenta Mathematicae. Unidade: IME

    Subjects: HIPERESPAÇO, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, v. 247, n. 1, p. 99-108, 2019Tradução . . Disponível em: https://doi.org/10.4064/fm657-10-2018. Acesso em: 06 nov. 2024.
    • APA

      Rodrigues, V. de O., & Tomita, A. H. (2019). Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, 247( 1), 99-108. doi:10.4064/fm657-10-2018
    • NLM

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm657-10-2018
    • Vancouver

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm657-10-2018
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F. e TOMITA, Artur Hideyuki. Pseudocompactness and resolvability. Fundamenta Mathematicae, v. 241, n. 2, p. 127-142, 2018Tradução . . Disponível em: https://doi.org/10.4064/fm215-8-2017. Acesso em: 06 nov. 2024.
    • APA

      Ortiz-Castillo, Y. F., & Tomita, A. H. (2018). Pseudocompactness and resolvability. Fundamenta Mathematicae, 241( 2), 127-142. doi:10.4064/fm215-8-2017
    • NLM

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm215-8-2017
    • Vancouver

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm215-8-2017
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDERMAN, Arkady G e PESTOV, Vladimir G e TOMITA, Artur Hideyuki. On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, v. 238, p. 79-100, 2017Tradução . . Disponível em: https://doi.org/10.4064/fm188-9-2016. Acesso em: 06 nov. 2024.
    • APA

      Leiderman, A. G., Pestov, V. G., & Tomita, A. H. (2017). On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, 238, 79-100. doi:10.4064/fm188-9-2016
    • NLM

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm188-9-2016
    • Vancouver

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm188-9-2016
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina e TOMITA, Artur Hideyuki. A group topology on the free abelian group of cardinality $\germ c$ that makes its square countably compact. Fundamenta Mathematicae, v. 212, n. 3, p. 235-260, 2011Tradução . . Disponível em: https://doi.org/10.4064/fm212-3-3. Acesso em: 06 nov. 2024.
    • APA

      Boero, A. C., & Tomita, A. H. (2011). A group topology on the free abelian group of cardinality $\germ c$ that makes its square countably compact. Fundamenta Mathematicae, 212( 3), 235-260. doi:10.4064/fm212-3-3
    • NLM

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality $\germ c$ that makes its square countably compact [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm212-3-3
    • Vancouver

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality $\germ c$ that makes its square countably compact [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm212-3-3
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A solution to Comfort's question on the countable compactness of powers of a topological group. Fundamenta Mathematicae, v. 186, n. 1, p. 1-24, 2005Tradução . . Disponível em: https://doi.org/10.4064/fm186-1-1. Acesso em: 06 nov. 2024.
    • APA

      Tomita, A. H. (2005). A solution to Comfort's question on the countable compactness of powers of a topological group. Fundamenta Mathematicae, 186( 1), 1-24. doi:10.4064/fm186-1-1
    • NLM

      Tomita AH. A solution to Comfort's question on the countable compactness of powers of a topological group [Internet]. Fundamenta Mathematicae. 2005 ; 186( 1): 1-24.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm186-1-1
    • Vancouver

      Tomita AH. A solution to Comfort's question on the countable compactness of powers of a topological group [Internet]. Fundamenta Mathematicae. 2005 ; 186( 1): 1-24.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm186-1-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024