Filtros : "TAL, FABIO ARMANDO" "Suiça" "IME" Removidos: "FCF002" "Instituto Butantan (IB)" "FCFRP" Limpar

Filtros



Refine with date range


  • Source: Qualitative Theory of Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLATTO, Renato Belinelo e TAL, Fábio Armando. Ergodicity and annular homeomorphisms of the torus. Qualitative Theory of Dynamical Systems, v. 12, n. 2, p. 377-391, 2013Tradução . . Disponível em: https://doi.org/10.1007/s12346-012-0095-8. Acesso em: 03 nov. 2024.
    • APA

      Bortolatto, R. B., & Tal, F. A. (2013). Ergodicity and annular homeomorphisms of the torus. Qualitative Theory of Dynamical Systems, 12( 2), 377-391. doi:10.1007/s12346-012-0095-8
    • NLM

      Bortolatto RB, Tal FA. Ergodicity and annular homeomorphisms of the torus [Internet]. Qualitative Theory of Dynamical Systems. 2013 ; 12( 2): 377-391.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-012-0095-8
    • Vancouver

      Bortolatto RB, Tal FA. Ergodicity and annular homeomorphisms of the torus [Internet]. Qualitative Theory of Dynamical Systems. 2013 ; 12( 2): 377-391.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-012-0095-8
  • Source: Qualitative Theory of Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e TAL, Fábio Armando. Boyland’s Conjecture for Rotationless Homeomorphisms of the Annulus with Two Fixed Points. Qualitative Theory of Dynamical Systems, v. 10, n. 1, p. 23-27, 2011Tradução . . Disponível em: https://doi.org/10.1007/s12346-010-0034-5. Acesso em: 03 nov. 2024.
    • APA

      Addas-Zanata, S., & Tal, F. A. (2011). Boyland’s Conjecture for Rotationless Homeomorphisms of the Annulus with Two Fixed Points. Qualitative Theory of Dynamical Systems, 10( 1), 23-27. doi:10.1007/s12346-010-0034-5
    • NLM

      Addas-Zanata S, Tal FA. Boyland’s Conjecture for Rotationless Homeomorphisms of the Annulus with Two Fixed Points [Internet]. Qualitative Theory of Dynamical Systems. 2011 ; 10( 1): 23-27.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-010-0034-5
    • Vancouver

      Addas-Zanata S, Tal FA. Boyland’s Conjecture for Rotationless Homeomorphisms of the Annulus with Two Fixed Points [Internet]. Qualitative Theory of Dynamical Systems. 2011 ; 10( 1): 23-27.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-010-0034-5
  • Source: Qualitative Theory of Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLATTO, Renato Belinelo e GARCIA, Manuel Valentim de Pera e TAL, Fábio Armando. Kinetic energy and the stable set. Qualitative Theory of Dynamical Systems, v. 10, n. 1, p. 1-10, 2011Tradução . . Disponível em: https://doi.org/10.1007/s12346-010-0029-2. Acesso em: 03 nov. 2024.
    • APA

      Bortolatto, R. B., Garcia, M. V. de P., & Tal, F. A. (2011). Kinetic energy and the stable set. Qualitative Theory of Dynamical Systems, 10( 1), 1-10. doi:10.1007/s12346-010-0029-2
    • NLM

      Bortolatto RB, Garcia MV de P, Tal FA. Kinetic energy and the stable set [Internet]. Qualitative Theory of Dynamical Systems. 2011 ; 10( 1): 1-10.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-010-0029-2
    • Vancouver

      Bortolatto RB, Garcia MV de P, Tal FA. Kinetic energy and the stable set [Internet]. Qualitative Theory of Dynamical Systems. 2011 ; 10( 1): 1-10.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s12346-010-0029-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024