Filtros : "SILVA, SILVIO SILVERIO DA" "2021" "EEL" Removidos: "BIODIESEL" "DIFRAÇÃO POR RAIOS X" "lv" Limpar

Filtros



Limitar por data


  • Fonte: Industrial & Engineering Chemistry Research. Unidade: EEL

    Assuntos: CELULOSE, ENERGIA, BAGAÇOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELIAS, Andrew M. et al. Techno-Economic-Environmental Analysis of Sophorolipid Biosurfactant Production from Sugarcane Bagasse. Industrial & Engineering Chemistry Research, v. 60, n. 27, p. 9833–9850, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.iecr.1c00069. Acesso em: 23 jun. 2024.
    • APA

      Elias, A. M., Longati, A. A., Ellamla, H. R., Furlan, F. F., Ribeiro, M. P. A., Santos, J. C. dos, et al. (2021). Techno-Economic-Environmental Analysis of Sophorolipid Biosurfactant Production from Sugarcane Bagasse. Industrial & Engineering Chemistry Research, 60( 27), 9833–9850. doi:10.1021/acs.iecr.1c00069
    • NLM

      Elias AM, Longati AA, Ellamla HR, Furlan FF, Ribeiro MPA, Santos JC dos, Silva SS da, Marcelino PRF. Techno-Economic-Environmental Analysis of Sophorolipid Biosurfactant Production from Sugarcane Bagasse [Internet]. Industrial & Engineering Chemistry Research. 2021 ; 60( 27): 9833–9850.[citado 2024 jun. 23 ] Available from: https://doi.org/10.1021/acs.iecr.1c00069
    • Vancouver

      Elias AM, Longati AA, Ellamla HR, Furlan FF, Ribeiro MPA, Santos JC dos, Silva SS da, Marcelino PRF. Techno-Economic-Environmental Analysis of Sophorolipid Biosurfactant Production from Sugarcane Bagasse [Internet]. Industrial & Engineering Chemistry Research. 2021 ; 60( 27): 9833–9850.[citado 2024 jun. 23 ] Available from: https://doi.org/10.1021/acs.iecr.1c00069
  • Fonte: Colloids and Surfaces B: Biointerfaces. Unidade: EEL

    Assunto: LIPÍDEOS DA MEMBRANA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCELINO, Paulo Ricardo Franco et al. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloids and Surfaces B: Biointerfaces, v. 227, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfb.2021.112029. Acesso em: 23 jun. 2024.
    • APA

      Marcelino, P. R. F., Ortiz, J., Silva, S. S. da, & Ortiz, A. (2021). Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloids and Surfaces B: Biointerfaces, 227. doi:10.1016/j.colsurfb.2021.112029
    • NLM

      Marcelino PRF, Ortiz J, Silva SS da, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. [Internet]. Colloids and Surfaces B: Biointerfaces. 2021 ; 227[citado 2024 jun. 23 ] Available from: https://doi.org/10.1016/j.colsurfb.2021.112029
    • Vancouver

      Marcelino PRF, Ortiz J, Silva SS da, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. [Internet]. Colloids and Surfaces B: Biointerfaces. 2021 ; 227[citado 2024 jun. 23 ] Available from: https://doi.org/10.1016/j.colsurfb.2021.112029
  • Fonte: Fermentation. Unidade: EEL

    Assuntos: CANA-DE-AÇÚCAR, SOJA, BAGAÇOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASCENCIO, Jesús J. et al. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization. Fermentation, v. 7, n. 108, 2021Tradução . . Disponível em: https://doi.org/10.3390/fermentation7030108. Acesso em: 23 jun. 2024.
    • APA

      Ascencio, J. J., Philippini, R. R., GOMES, F. M., PEREIRA, F. M., Silva, S. S. da, Kumar, V., & Chandel, A. K. (2021). Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization. Fermentation, 7( 108). doi:10.3390/fermentation7030108
    • NLM

      Ascencio JJ, Philippini RR, GOMES FM, PEREIRA FM, Silva SS da, Kumar V, Chandel AK. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization [Internet]. Fermentation. 2021 ; 7( 108):[citado 2024 jun. 23 ] Available from: https://doi.org/10.3390/fermentation7030108
    • Vancouver

      Ascencio JJ, Philippini RR, GOMES FM, PEREIRA FM, Silva SS da, Kumar V, Chandel AK. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization [Internet]. Fermentation. 2021 ; 7( 108):[citado 2024 jun. 23 ] Available from: https://doi.org/10.3390/fermentation7030108
  • Fonte: Biomass conversion and biorefinery. Unidades: EEL, FCF

    Assuntos: LEVEDURAS, CANA-DE-AÇÚCAR

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAVES, Flaviana da Silva et al. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate. Biomass conversion and biorefinery, 2021Tradução . . Disponível em: https://doi.org/10.1007/s13399-021-01578-8. Acesso em: 23 jun. 2024.
    • APA

      Chaves, F. da S., Brumano, L. P., Marcelino, P. R. F., Silva, S. S. da, Sette, L. D., & Felipe, M. das G. de A. (2021). Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate. Biomass conversion and biorefinery. doi:10.1007/s13399-021-01578-8
    • NLM

      Chaves F da S, Brumano LP, Marcelino PRF, Silva SS da, Sette LD, Felipe M das G de A. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate [Internet]. Biomass conversion and biorefinery. 2021 ;[citado 2024 jun. 23 ] Available from: https://doi.org/10.1007/s13399-021-01578-8
    • Vancouver

      Chaves F da S, Brumano LP, Marcelino PRF, Silva SS da, Sette LD, Felipe M das G de A. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate [Internet]. Biomass conversion and biorefinery. 2021 ;[citado 2024 jun. 23 ] Available from: https://doi.org/10.1007/s13399-021-01578-8
  • Fonte: Journal of Food Processing and Preservation. Unidade: EEL

    Assunto: PECTINA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARYA, Shalini S. et al. Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures. Journal of Food Processing and Preservation, v. 45, n. 10, 2021Tradução . . Disponível em: https://doi.org/10.1111/jfpp.15794. Acesso em: 23 jun. 2024.
    • APA

      Arya, S. S., More, P. R., Hilares, R. T., Pereira, B., Arantes, V., Silva, S. S. da, & Santos, J. C. (2021). Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures. Journal of Food Processing and Preservation, 45( 10). doi:10.1111/jfpp.15794
    • NLM

      Arya SS, More PR, Hilares RT, Pereira B, Arantes V, Silva SS da, Santos JC. Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures [Internet]. Journal of Food Processing and Preservation. 2021 ; 45( 10):[citado 2024 jun. 23 ] Available from: https://doi.org/10.1111/jfpp.15794
    • Vancouver

      Arya SS, More PR, Hilares RT, Pereira B, Arantes V, Silva SS da, Santos JC. Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures [Internet]. Journal of Food Processing and Preservation. 2021 ; 45( 10):[citado 2024 jun. 23 ] Available from: https://doi.org/10.1111/jfpp.15794
  • Fonte: Microbial Nanobiotechnology. Unidade: EEL

    Assuntos: PROCESSAMENTO DE ALIMENTOS, NANOTECNOLOGIA, NANOPARTÍCULAS, CONTAMINAÇÃO DE ALIMENTOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Application of Microbial-Synthesized Nanoparticles in Food Industries. Microbial Nanobiotechnology. Tradução . [S.l.]: Springer Singapore, 2021. p. 399-424. Disponível em: https://doi.org/10.1007/978-981-33-4777-9_14. Acesso em: 23 jun. 2024.
    • APA

      Ingle, A. P., Philippini, R. R., Martiniano, S. E., Antunes, F. A. F., Rocha, T. M., & Silva, S. S. da. (2021). Application of Microbial-Synthesized Nanoparticles in Food Industries. In Microbial Nanobiotechnology (p. 399-424). Springer Singapore. doi:10.1007/978-981-33-4777-9_14
    • NLM

      Ingle AP, Philippini RR, Martiniano SE, Antunes FAF, Rocha TM, Silva SS da. Application of Microbial-Synthesized Nanoparticles in Food Industries [Internet]. In: Microbial Nanobiotechnology. Springer Singapore; 2021. p. 399-424.[citado 2024 jun. 23 ] Available from: https://doi.org/10.1007/978-981-33-4777-9_14
    • Vancouver

      Ingle AP, Philippini RR, Martiniano SE, Antunes FAF, Rocha TM, Silva SS da. Application of Microbial-Synthesized Nanoparticles in Food Industries [Internet]. In: Microbial Nanobiotechnology. Springer Singapore; 2021. p. 399-424.[citado 2024 jun. 23 ] Available from: https://doi.org/10.1007/978-981-33-4777-9_14

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024