Filtros : "NONATO, LUIS GUSTAVO" Removido: "Reino Unido" Limpar

Filtros



Refine with date range


  • Source: Proceedings. Conference titles: Workshop on Automated Semantic Analysis of Information in Legal Text - ASAIL. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, DIREITO, PROCESSAMENTO DE LINGUAGEM NATURAL, PESQUISA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RESCK, Lucas et al. Explainable NLLP: advancements in explainable AI for natural legal language processing. 2025, Anais.. Harvard: IAAIL, 2025. Disponível em: https://visualdslab.com/papers/ExplainableNLLP. Acesso em: 02 nov. 2025.
    • APA

      Resck, L., Moreno-Vera, F., Veiga, T., Paucar, G., Fajreldines, E., Klafke, G., et al. (2025). Explainable NLLP: advancements in explainable AI for natural legal language processing. In Proceedings. Harvard: IAAIL. Recuperado de https://visualdslab.com/papers/ExplainableNLLP
    • NLM

      Resck L, Moreno-Vera F, Veiga T, Paucar G, Fajreldines E, Klafke G, Nonato LG, Poco J. Explainable NLLP: advancements in explainable AI for natural legal language processing [Internet]. Proceedings. 2025 ;[citado 2025 nov. 02 ] Available from: https://visualdslab.com/papers/ExplainableNLLP
    • Vancouver

      Resck L, Moreno-Vera F, Veiga T, Paucar G, Fajreldines E, Klafke G, Nonato LG, Poco J. Explainable NLLP: advancements in explainable AI for natural legal language processing [Internet]. Proceedings. 2025 ;[citado 2025 nov. 02 ] Available from: https://visualdslab.com/papers/ExplainableNLLP
    GDS 17. Partnerships for the goals
  • Source: IEEE Access. Unidade: ICMC

    Subjects: ANÁLISE DE DADOS, INTERFACE HOMEM-COMPUTADOR, ATRIBUTOS VISUAIS (COMPUTAÇÃO GRÁFICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIGOSSA, Evandro Scudeleti et al. Time series information visualization: a review of approaches and tools. IEEE Access, v. 13, p. 161653-161732, 2025Tradução . . Disponível em: https://doi.org/10.1109/ACCESS.2025.3609404. Acesso em: 02 nov. 2025.
    • APA

      Ortigossa, E. S., Dias, F. F., Nascimento, D. C., & Nonato, L. G. (2025). Time series information visualization: a review of approaches and tools. IEEE Access, 13, 161653-161732. doi:10.1109/ACCESS.2025.3609404
    • NLM

      Ortigossa ES, Dias FF, Nascimento DC, Nonato LG. Time series information visualization: a review of approaches and tools [Internet]. IEEE Access. 2025 ; 13 161653-161732.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/ACCESS.2025.3609404
    • Vancouver

      Ortigossa ES, Dias FF, Nascimento DC, Nonato LG. Time series information visualization: a review of approaches and tools [Internet]. IEEE Access. 2025 ; 13 161653-161732.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/ACCESS.2025.3609404
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, MODELAGEM DE DADOS, SIMULAÇÃO, VISUALIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Priscylla et al. Visagreement: visualizing and exploring explanations (dis)agreement. IEEE Transactions on Visualization and Computer Graphics, v. 31, n. 10 , p. 7862-7875, 2025Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2025.3558074. Acesso em: 02 nov. 2025.
    • APA

      Silva, P., Guardieiro, V., Barr, B., Silva, C., & Nonato, L. G. (2025). Visagreement: visualizing and exploring explanations (dis)agreement. IEEE Transactions on Visualization and Computer Graphics, 31( 10 ), 7862-7875. doi:10.1109/TVCG.2025.3558074
    • NLM

      Silva P, Guardieiro V, Barr B, Silva C, Nonato LG. Visagreement: visualizing and exploring explanations (dis)agreement [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 10 ): 7862-7875.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2025.3558074
    • Vancouver

      Silva P, Guardieiro V, Barr B, Silva C, Nonato LG. Visagreement: visualizing and exploring explanations (dis)agreement [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 10 ): 7862-7875.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2025.3558074
  • Source: Artificial Intelligence and Law. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, DIREITO, PESQUISA, PROCESSAMENTO DE LINGUAGEM NATURAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RESCK, Lucas et al. LegalAnalytics: bridging visual explanations and workload streamline in Brazilian Supreme Court appeals. Artificial Intelligence and Law, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10506-025-09446-w. Acesso em: 02 nov. 2025.
    • APA

      Resck, L., Moreno-Vera, F., Veiga, T., Paucar, G., Fajreldines, E., Klafke, G., et al. (2025). LegalAnalytics: bridging visual explanations and workload streamline in Brazilian Supreme Court appeals. Artificial Intelligence and Law. doi:10.1007/s10506-025-09446-w
    • NLM

      Resck L, Moreno-Vera F, Veiga T, Paucar G, Fajreldines E, Klafke G, Nonato LG, Poco J. LegalAnalytics: bridging visual explanations and workload streamline in Brazilian Supreme Court appeals [Internet]. Artificial Intelligence and Law. 2025 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s10506-025-09446-w
    • Vancouver

      Resck L, Moreno-Vera F, Veiga T, Paucar G, Fajreldines E, Klafke G, Nonato LG, Poco J. LegalAnalytics: bridging visual explanations and workload streamline in Brazilian Supreme Court appeals [Internet]. Artificial Intelligence and Law. 2025 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s10506-025-09446-w
    GDS 17. Partnerships for the goals
  • Source: Lecture Notes in Artificial Intelligence - LNAI. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC

    Subjects: SEGURANÇA PÚBLICA, MODELAGEM DE DADOS, REDES NEURAIS, CRIME

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASSAN, Waqar et al. Modeling and predicting crimes in the city of São Paulo using graph neural networks. Lecture Notes in Artificial Intelligence - LNAI. Cham: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/978-3-031-79035-5_26. Acesso em: 02 nov. 2025. , 2025
    • APA

      Hassan, W., Cabral, M. M., Ramos, T. R., Castelo, A., & Nonato, L. G. (2025). Modeling and predicting crimes in the city of São Paulo using graph neural networks. Lecture Notes in Artificial Intelligence - LNAI. Cham: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1007/978-3-031-79035-5_26
    • NLM

      Hassan W, Cabral MM, Ramos TR, Castelo A, Nonato LG. Modeling and predicting crimes in the city of São Paulo using graph neural networks [Internet]. Lecture Notes in Artificial Intelligence - LNAI. 2025 ; 15414 372-386.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/978-3-031-79035-5_26
    • Vancouver

      Hassan W, Cabral MM, Ramos TR, Castelo A, Nonato LG. Modeling and predicting crimes in the city of São Paulo using graph neural networks [Internet]. Lecture Notes in Artificial Intelligence - LNAI. 2025 ; 15414 372-386.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/978-3-031-79035-5_26
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, CRIMINALIDADE, TOMADA DE DECISÃO, ANÁLISE DE DADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAIMUNDO, Marcos M et al. CounterCrime: Using counterfactual explanations to explore crime reduction scenarios. IEEE Transactions on Visualization and Computer Graphics, v. 31, n. 10, p. 9008-9023, 2025Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2025.3586202. Acesso em: 02 nov. 2025.
    • APA

      Raimundo, M. M., Garcia-Zanabria, G., Nonato, L. G., & Poco, J. (2025). CounterCrime: Using counterfactual explanations to explore crime reduction scenarios. IEEE Transactions on Visualization and Computer Graphics, 31( 10), 9008-9023. doi:10.1109/TVCG.2025.3586202
    • NLM

      Raimundo MM, Garcia-Zanabria G, Nonato LG, Poco J. CounterCrime: Using counterfactual explanations to explore crime reduction scenarios [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 10): 9008-9023.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2025.3586202
    • Vancouver

      Raimundo MM, Garcia-Zanabria G, Nonato LG, Poco J. CounterCrime: Using counterfactual explanations to explore crime reduction scenarios [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 10): 9008-9023.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2025.3586202
  • Source: IEEE Intelligent Systems. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, TOMADA DE DECISÃO, BENCHMARKS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIGOSSA, Evandro Scudeleti et al. T-Explainer: a model-agnostic explainability framework based on gradients. IEEE Intelligent Systems, 2025Tradução . . Disponível em: https://doi.org/10.1109/MIS.2025.3564330. Acesso em: 02 nov. 2025.
    • APA

      Ortigossa, E. S., Dias, F. F., Barr, B., Silva, C. T., & Nonato, L. G. (2025). T-Explainer: a model-agnostic explainability framework based on gradients. IEEE Intelligent Systems. doi:10.1109/MIS.2025.3564330
    • NLM

      Ortigossa ES, Dias FF, Barr B, Silva CT, Nonato LG. T-Explainer: a model-agnostic explainability framework based on gradients [Internet]. IEEE Intelligent Systems. 2025 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/MIS.2025.3564330
    • Vancouver

      Ortigossa ES, Dias FF, Barr B, Silva CT, Nonato LG. T-Explainer: a model-agnostic explainability framework based on gradients [Internet]. IEEE Intelligent Systems. 2025 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/MIS.2025.3564330
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: ANÁLISE DE DADOS, TOPOLOGIA, PROJEÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUARDIEIRO, Vitoria et al. TopoMap++: a faster and more space efficient technique to compute projections with topological guarantees. IEEE Transactions on Visualization and Computer Graphics, v. 31, n. 1, p. 229-239, 2025Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2024.3456365. Acesso em: 02 nov. 2025.
    • APA

      Guardieiro, V., Oliveira, F. I. de, Doraiswamy, H., Nonato, L. G., & Silva, C. (2025). TopoMap++: a faster and more space efficient technique to compute projections with topological guarantees. IEEE Transactions on Visualization and Computer Graphics, 31( 1), 229-239. doi:10.1109/TVCG.2024.3456365
    • NLM

      Guardieiro V, Oliveira FI de, Doraiswamy H, Nonato LG, Silva C. TopoMap++: a faster and more space efficient technique to compute projections with topological guarantees [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 1): 229-239.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2024.3456365
    • Vancouver

      Guardieiro V, Oliveira FI de, Doraiswamy H, Nonato LG, Silva C. TopoMap++: a faster and more space efficient technique to compute projections with topological guarantees [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2025 ; 31( 1): 229-239.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2024.3456365
  • Source: IEEE Access. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REPRESENTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIGOSSA, Evandro Scudeleti e GONÇALVES, Thales e NONATO, Luis Gustavo. Explainable artificial intelligence (XAI): from theory to methods and applications. IEEE Access, v. 12, p. 80799-80846, 2024Tradução . . Disponível em: https://doi.org/10.1109/ACCESS.2024.3409843. Acesso em: 02 nov. 2025.
    • APA

      Ortigossa, E. S., Gonçalves, T., & Nonato, L. G. (2024). Explainable artificial intelligence (XAI): from theory to methods and applications. IEEE Access, 12, 80799-80846. doi:10.1109/ACCESS.2024.3409843
    • NLM

      Ortigossa ES, Gonçalves T, Nonato LG. Explainable artificial intelligence (XAI): from theory to methods and applications [Internet]. IEEE Access. 2024 ; 12 80799-80846.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/ACCESS.2024.3409843
    • Vancouver

      Ortigossa ES, Gonçalves T, Nonato LG. Explainable artificial intelligence (XAI): from theory to methods and applications [Internet]. IEEE Access. 2024 ; 12 80799-80846.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/ACCESS.2024.3409843
  • Source: Proceedings of Machine Learning Research. Conference titles: Annual AAAI Conference on Artificial Intelligence. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, APRENDIZAGEM PROFUNDA, ANÁLISE DE DESEMPENHO, EDUCAÇÃO

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Priscylla e SILVA, Claudio e NONATO, Luis Gustavo. Exploring the relationship between feature attribution methods and model performance. Proceedings of Machine Learning Research. Vancouver: AAAI. Disponível em: https://proceedings.mlr.press/v257/silva24a.html. Acesso em: 02 nov. 2025. , 2024
    • APA

      Silva, P., Silva, C., & Nonato, L. G. (2024). Exploring the relationship between feature attribution methods and model performance. Proceedings of Machine Learning Research. Vancouver: AAAI. Recuperado de https://proceedings.mlr.press/v257/silva24a.html
    • NLM

      Silva P, Silva C, Nonato LG. Exploring the relationship between feature attribution methods and model performance [Internet]. Proceedings of Machine Learning Research. 2024 ; 257 29-38.[citado 2025 nov. 02 ] Available from: https://proceedings.mlr.press/v257/silva24a.html
    • Vancouver

      Silva P, Silva C, Nonato LG. Exploring the relationship between feature attribution methods and model performance [Internet]. Proceedings of Machine Learning Research. 2024 ; 257 29-38.[citado 2025 nov. 02 ] Available from: https://proceedings.mlr.press/v257/silva24a.html
  • Source: Anais. Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI. Unidade: ICMC

    Subjects: GRAFOLOGIA, ALGORITMOS, VISUALIZAÇÃO, ESPAÇO URBANO, ANÁLISE DE DADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALINAS, Karelia Alexandra Vilca et al. A visual methodology to assess spatial graph vertex ordering algorithms. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/SIBGRAPI62404.2024.10716318. Acesso em: 02 nov. 2025.
    • APA

      Salinas, K. A. V., Barella, V. H., Vieira, T., & Nonato, L. G. (2024). A visual methodology to assess spatial graph vertex ordering algorithms. In Anais. Piscataway: IEEE. doi:10.1109/SIBGRAPI62404.2024.10716318
    • NLM

      Salinas KAV, Barella VH, Vieira T, Nonato LG. A visual methodology to assess spatial graph vertex ordering algorithms [Internet]. Anais. 2024 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/SIBGRAPI62404.2024.10716318
    • Vancouver

      Salinas KAV, Barella VH, Vieira T, Nonato LG. A visual methodology to assess spatial graph vertex ordering algorithms [Internet]. Anais. 2024 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/SIBGRAPI62404.2024.10716318
  • Source: Data Mining and Knowledge Discovery. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAIMUNDO, Marcos M e NONATO, Luis Gustavo e POCO, Jorge. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, v. 38, p. 2942-2974, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10618-022-00906-4. Acesso em: 02 nov. 2025.
    • APA

      Raimundo, M. M., Nonato, L. G., & Poco, J. (2024). Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, 38, 2942-2974. doi:10.1007/s10618-022-00906-4
    • NLM

      Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s10618-022-00906-4
    • Vancouver

      Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s10618-022-00906-4
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: MODELAGEM DE DADOS, APRENDIZADO COMPUTACIONAL, ESTATÍSTICA, SIMULAÇÃO, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOLUNKE, Parikshit et al. MOUNTAINEER: topology-driven visual analytics for comparing local explanations. IEEE Transactions on Visualization and Computer Graphics, v. 30, n. 12, p. 7763-7775, 2024Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2024.3418653. Acesso em: 02 nov. 2025.
    • APA

      Solunke, P., Guardieiro, V., Rulff, J., Chan, G. Y. -Y., Barr, B., Nonato, L. G., & Silva, C. (2024). MOUNTAINEER: topology-driven visual analytics for comparing local explanations. IEEE Transactions on Visualization and Computer Graphics, 30( 12), 7763-7775. doi:10.1109/TVCG.2024.3418653
    • NLM

      Solunke P, Guardieiro V, Rulff J, Chan GY-Y, Barr B, Nonato LG, Silva C. MOUNTAINEER: topology-driven visual analytics for comparing local explanations [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2024 ; 30( 12): 7763-7775.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2024.3418653
    • Vancouver

      Solunke P, Guardieiro V, Rulff J, Chan GY-Y, Barr B, Nonato LG, Silva C. MOUNTAINEER: topology-driven visual analytics for comparing local explanations [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2024 ; 30( 12): 7763-7775.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2024.3418653
  • Source: Anais. Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI. Unidade: ICMC

    Subjects: MINERAÇÃO DE DADOS, TOMADA DE DECISÃO, VISUALIZAÇÃO, SEGURANÇA PÚBLICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Tiago Paulino et al. Space-time urban explorer: a visual tool for exploring spatiotemporal crime and patrolling data. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/SIBGRAPI62404.2024.10716319. Acesso em: 02 nov. 2025.
    • APA

      Santos, T. P., Souza, J. M. S., Vieira, T., & Nonato, L. G. (2024). Space-time urban explorer: a visual tool for exploring spatiotemporal crime and patrolling data. In Anais. Piscataway: IEEE. doi:10.1109/SIBGRAPI62404.2024.10716319
    • NLM

      Santos TP, Souza JMS, Vieira T, Nonato LG. Space-time urban explorer: a visual tool for exploring spatiotemporal crime and patrolling data [Internet]. Anais. 2024 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/SIBGRAPI62404.2024.10716319
    • Vancouver

      Santos TP, Souza JMS, Vieira T, Nonato LG. Space-time urban explorer: a visual tool for exploring spatiotemporal crime and patrolling data [Internet]. Anais. 2024 ;[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/SIBGRAPI62404.2024.10716319
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: PROCESSAMENTO DE LINGUAGEM NATURAL, VISUALIZAÇÃO, SISTEMA JUDICIÁRIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOMINGUES, Lucas Emanuel Resck et al. LegalVis: exploring and inferring precedent citations in legal documents. IEEE Transactions on Visualization and Computer Graphics, v. 29, n. 6, p. 3105-3120, 2023Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2022.3152450. Acesso em: 02 nov. 2025.
    • APA

      Domingues, L. E. R., Ponciano, J. R., Poco, J., & Nonato, L. G. (2023). LegalVis: exploring and inferring precedent citations in legal documents. IEEE Transactions on Visualization and Computer Graphics, 29( 6), 3105-3120. doi:10.1109/TVCG.2022.3152450
    • NLM

      Domingues LER, Ponciano JR, Poco J, Nonato LG. LegalVis: exploring and inferring precedent citations in legal documents [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2023 ; 29( 6): 3105-3120.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2022.3152450
    • Vancouver

      Domingues LER, Ponciano JR, Poco J, Nonato LG. LegalVis: exploring and inferring precedent citations in legal documents [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2023 ; 29( 6): 3105-3120.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2022.3152450
  • Source: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, VISUALIZAÇÃO, MODELOS PARA PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      XENOPOULOS, Peter et al. Calibrate: interactive analysis of probabilistic model output. IEEE Transactions on Visualization and Computer Graphics, v. 29, n. Ja 2023, p. 853-863, 2023Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2022.3209489. Acesso em: 02 nov. 2025.
    • APA

      Xenopoulos, P., Rulff, J., Nonato, L. G., Barr, B., & Silva, C. (2023). Calibrate: interactive analysis of probabilistic model output. IEEE Transactions on Visualization and Computer Graphics, 29( Ja 2023), 853-863. doi:10.1109/TVCG.2022.3209489
    • NLM

      Xenopoulos P, Rulff J, Nonato LG, Barr B, Silva C. Calibrate: interactive analysis of probabilistic model output [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2023 ; 29( Ja 2023): 853-863.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2022.3209489
    • Vancouver

      Xenopoulos P, Rulff J, Nonato LG, Barr B, Silva C. Calibrate: interactive analysis of probabilistic model output [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2023 ; 29( Ja 2023): 853-863.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/TVCG.2022.3209489
  • Source: Brazilian Journal of Analytical Chemistry. Unidade: ICMC

    Subjects: BIOCOMBUSTÍVEIS, ALGORITMOS, APRENDIZADO COMPUTACIONAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUNA, Aderval Severino et al. Employing auto-machine learning algorithms for predicting the cold filter plugging and kinematic viscosity at 40 ºC in biodiesel blends using vibrational spectroscopy data. Brazilian Journal of Analytical Chemistry, v. 10, n. 39, p. 52-69, 2023Tradução . . Disponível em: https://doi.org/10.30744/brjac.2179-3425.AR-30-2022. Acesso em: 02 nov. 2025.
    • APA

      Luna, A. S., Torres, A. R., Cunha, C. L., Lima, I. C. A. de, & Nonato, L. G. (2023). Employing auto-machine learning algorithms for predicting the cold filter plugging and kinematic viscosity at 40 ºC in biodiesel blends using vibrational spectroscopy data. Brazilian Journal of Analytical Chemistry, 10( 39), 52-69. doi:10.30744/brjac.2179-3425.AR-30-2022
    • NLM

      Luna AS, Torres AR, Cunha CL, Lima ICA de, Nonato LG. Employing auto-machine learning algorithms for predicting the cold filter plugging and kinematic viscosity at 40 ºC in biodiesel blends using vibrational spectroscopy data [Internet]. Brazilian Journal of Analytical Chemistry. 2023 ; 10( 39): 52-69.[citado 2025 nov. 02 ] Available from: https://doi.org/10.30744/brjac.2179-3425.AR-30-2022
    • Vancouver

      Luna AS, Torres AR, Cunha CL, Lima ICA de, Nonato LG. Employing auto-machine learning algorithms for predicting the cold filter plugging and kinematic viscosity at 40 ºC in biodiesel blends using vibrational spectroscopy data [Internet]. Brazilian Journal of Analytical Chemistry. 2023 ; 10( 39): 52-69.[citado 2025 nov. 02 ] Available from: https://doi.org/10.30744/brjac.2179-3425.AR-30-2022
  • Source: Proceedings. Conference titles: International Workshop on Statistical Modelling. Unidades: ICMC, Interinstitucional de Pós-Graduação em Estatística

    Subjects: SÃO PAULO (SP), CRIMINALIDADE, PREDIÇÃO, REDES NEURAIS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHAO, Wellington Yuanhe e NONATO, Luis Gustavo e RUSSO, Cibele Maria. Crime prediction models in the metropolitan area of São Paulo - Brazil. 2023, Anais.. Dortmund: TU Dortmund University, 2023. Disponível em: https://iwsm2023.statistik.tu-dortmund.de. Acesso em: 02 nov. 2025.
    • APA

      Zhao, W. Y., Nonato, L. G., & Russo, C. M. (2023). Crime prediction models in the metropolitan area of São Paulo - Brazil. In Proceedings. Dortmund: TU Dortmund University. Recuperado de https://iwsm2023.statistik.tu-dortmund.de
    • NLM

      Zhao WY, Nonato LG, Russo CM. Crime prediction models in the metropolitan area of São Paulo - Brazil [Internet]. Proceedings. 2023 ;[citado 2025 nov. 02 ] Available from: https://iwsm2023.statistik.tu-dortmund.de
    • Vancouver

      Zhao WY, Nonato LG, Russo CM. Crime prediction models in the metropolitan area of São Paulo - Brazil [Internet]. Proceedings. 2023 ;[citado 2025 nov. 02 ] Available from: https://iwsm2023.statistik.tu-dortmund.de
  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: VISÃO COMPUTACIONAL, ENCHENTES URBANAS, SEMÂNTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES JUNIOR, Francisco Erivaldo e NONATO, Luis Gustavo e UEYAMA, Jó. A river flooding detection system based on deep learning and computer vision. Multimedia Tools and Applications, v. 81, p. 40231-40251, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11042-022-12813-3. Acesso em: 02 nov. 2025.
    • APA

      Fernandes Junior, F. E., Nonato, L. G., & Ueyama, J. (2022). A river flooding detection system based on deep learning and computer vision. Multimedia Tools and Applications, 81, 40231-40251. doi:10.1007/s11042-022-12813-3
    • NLM

      Fernandes Junior FE, Nonato LG, Ueyama J. A river flooding detection system based on deep learning and computer vision [Internet]. Multimedia Tools and Applications. 2022 ; 81 40231-40251.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s11042-022-12813-3
    • Vancouver

      Fernandes Junior FE, Nonato LG, Ueyama J. A river flooding detection system based on deep learning and computer vision [Internet]. Multimedia Tools and Applications. 2022 ; 81 40231-40251.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1007/s11042-022-12813-3
  • Source: IEEE Computer Graphics and Applications. Unidade: ICMC

    Subjects: CLUSTERS, VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YUAN, Jun et al. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level. IEEE Computer Graphics and Applications, v. 42, n. 6, p. 24-36, 2022Tradução . . Disponível em: https://doi.org/10.1109/MCG.2022.3199727. Acesso em: 02 nov. 2025.
    • APA

      Yuan, J., Chan, G. Y. -Y., Barr, B., Overton, K., Rees, K., Nonato, L. G., et al. (2022). SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level. IEEE Computer Graphics and Applications, 42( 6), 24-36. doi:10.1109/MCG.2022.3199727
    • NLM

      Yuan J, Chan GY-Y, Barr B, Overton K, Rees K, Nonato LG, Bertini E, Silva CT. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level [Internet]. IEEE Computer Graphics and Applications. 2022 ; 42( 6): 24-36.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/MCG.2022.3199727
    • Vancouver

      Yuan J, Chan GY-Y, Barr B, Overton K, Rees K, Nonato LG, Bertini E, Silva CT. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level [Internet]. IEEE Computer Graphics and Applications. 2022 ; 42( 6): 24-36.[citado 2025 nov. 02 ] Available from: https://doi.org/10.1109/MCG.2022.3199727

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025