Filtros : "CALDAS, IBERE LUIZ" Removido: "Grime, Gabriel Cardoso" Limpar

Filtros



Refine with date range


  • Source: Chaos. Unidade: IF

    Subjects: CAOS (SISTEMAS DINÂMICOS), CORONAVIRUS, MODELOS MATEMÁTICOS, MÉTODOS NUMÉRICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GABRICK, Enrique C et al. Control, bi-stability, and preference for chaos in time-dependent vaccination campaign. Chaos, v. 34, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0221150. Acesso em: 14 jun. 2025.
    • APA

      Gabrick, E. C., Brugnago, E. L., Moraes, A. L. R. de, Protachevicz, P. R., Silva, S. T. da, Borges, F. S., et al. (2024). Control, bi-stability, and preference for chaos in time-dependent vaccination campaign. Chaos, 34. doi:https://doi.org/10.1063/5.0221150
    • NLM

      Gabrick EC, Brugnago EL, Moraes ALR de, Protachevicz PR, Silva ST da, Borges FS, Caldas IL, Batista AM, Kurths J. Control, bi-stability, and preference for chaos in time-dependent vaccination campaign [Internet]. Chaos. 2024 ; 34[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0221150
    • Vancouver

      Gabrick EC, Brugnago EL, Moraes ALR de, Protachevicz PR, Silva ST da, Borges FS, Caldas IL, Batista AM, Kurths J. Control, bi-stability, and preference for chaos in time-dependent vaccination campaign [Internet]. Chaos. 2024 ; 34[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0221150
  • Source: Journal of Physics: Complexity. Unidade: IF

    Subjects: REDES NEURAIS, NEUROCIÊNCIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Diogo Leonai M et al. Spiral wave dynamics in a neuronal network model. Journal of Physics: Complexity, v. 5, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1088/2632-072X/ad42f6. Acesso em: 14 jun. 2025.
    • APA

      Souza, D. L. M., Protachevicz, P. R., Batista, A. M., & Caldas, I. L. (2024). Spiral wave dynamics in a neuronal network model. Journal of Physics: Complexity, 5( 2). doi:10.1088/2632-072X/ad42f6
    • NLM

      Souza DLM, Protachevicz PR, Batista AM, Caldas IL. Spiral wave dynamics in a neuronal network model [Internet]. Journal of Physics: Complexity. 2024 ; 5( 2):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1088/2632-072X/ad42f6
    • Vancouver

      Souza DLM, Protachevicz PR, Batista AM, Caldas IL. Spiral wave dynamics in a neuronal network model [Internet]. Journal of Physics: Complexity. 2024 ; 5( 2):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1088/2632-072X/ad42f6
  • Source: European Physical Journal Special Topics A. Unidade: IF

    Assunto: DENGUE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Sidney T da et al. When climate variables improve the dengue forecasting: a machine learning approach. European Physical Journal Special Topics A, 2024Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-024-01201-7. Acesso em: 14 jun. 2025.
    • APA

      Silva, S. T. da, Gabrick, E. C., Protachevicz, P. R., Iarosz, K. C., Caldas, I. L., Batista, A. M., & Kurths, J. (2024). When climate variables improve the dengue forecasting: a machine learning approach. European Physical Journal Special Topics A. doi:10.1140/epjs/s11734-024-01201-7
    • NLM

      Silva ST da, Gabrick EC, Protachevicz PR, Iarosz KC, Caldas IL, Batista AM, Kurths J. When climate variables improve the dengue forecasting: a machine learning approach [Internet]. European Physical Journal Special Topics A. 2024 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-024-01201-7
    • Vancouver

      Silva ST da, Gabrick EC, Protachevicz PR, Iarosz KC, Caldas IL, Batista AM, Kurths J. When climate variables improve the dengue forecasting: a machine learning approach [Internet]. European Physical Journal Special Topics A. 2024 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-024-01201-7
  • Source: Physics of Plasmas. Unidade: IF

    Assunto: TOKAMAKS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRAILE, Jr. et al. Isochronous bifurcations of magnetic islands in tokamaks. Physics of Plasmas, v. 31, n. 7, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0212655. Acesso em: 14 jun. 2025.
    • APA

      Fraile, J., Roberto, M., Canal, G. P., & Caldas, I. L. (2024). Isochronous bifurcations of magnetic islands in tokamaks. Physics of Plasmas, 31( 7). doi:10.1063/5.0212655
    • NLM

      Fraile J, Roberto M, Canal GP, Caldas IL. Isochronous bifurcations of magnetic islands in tokamaks [Internet]. Physics of Plasmas. 2024 ; 31( 7):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0212655
    • Vancouver

      Fraile J, Roberto M, Canal GP, Caldas IL. Isochronous bifurcations of magnetic islands in tokamaks [Internet]. Physics of Plasmas. 2024 ; 31( 7):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0212655
  • Source: Physical Review E. Unidade: IF

    Assunto: TOKAMAKS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEAL, Bruno Borges et al. Isochronous island bifurcations driven by resonant magnetic perturbations in tokamaks. Physical Review E, v. 109, n. 1, 2024Tradução . . Disponível em: https://doi.org/10.1103/PhysRevE.109.014230. Acesso em: 14 jun. 2025.
    • APA

      Leal, B. B., Caldas, I. L., Sousa, M. C. de, Viana, R. L., & Almeida, A. M. O. de. (2024). Isochronous island bifurcations driven by resonant magnetic perturbations in tokamaks. Physical Review E, 109( 1). doi:10.1103/PhysRevE.109.014230
    • NLM

      Leal BB, Caldas IL, Sousa MC de, Viana RL, Almeida AMO de. Isochronous island bifurcations driven by resonant magnetic perturbations in tokamaks [Internet]. Physical Review E. 2024 ; 109( 1):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.109.014230
    • Vancouver

      Leal BB, Caldas IL, Sousa MC de, Viana RL, Almeida AMO de. Isochronous island bifurcations driven by resonant magnetic perturbations in tokamaks [Internet]. Physical Review E. 2024 ; 109( 1):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.109.014230
  • Source: Chaos. Unidade: IF

    Assunto: NEUROCIÊNCIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Diogo Leonai M et al. Adaptive exponential integrate-and-fire model with fractal extension. Chaos, v. 34, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0176455. Acesso em: 14 jun. 2025.
    • APA

      Souza, D. L. M., Gabrick, E. C., Protachevicz, P. R., Borges, F. da S., Trobia, J., Iarosz, K. C., et al. (2024). Adaptive exponential integrate-and-fire model with fractal extension. Chaos, 34( 2). doi:10.1063/5.0176455
    • NLM

      Souza DLM, Gabrick EC, Protachevicz PR, Borges F da S, Trobia J, Iarosz KC, Batista AM, Caldas IL, Lenzi EK. Adaptive exponential integrate-and-fire model with fractal extension [Internet]. Chaos. 2024 ; 34( 2):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0176455
    • Vancouver

      Souza DLM, Gabrick EC, Protachevicz PR, Borges F da S, Trobia J, Iarosz KC, Batista AM, Caldas IL, Lenzi EK. Adaptive exponential integrate-and-fire model with fractal extension [Internet]. Chaos. 2024 ; 34( 2):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0176455
  • Source: Chaos. Unidade: IF

    Assunto: VACINAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GABRICK, Enrique Chipicoski et al. Impact of periodic vaccination in SEIRS seasonal model. Chaos, v. 34, n. 1, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0169834. Acesso em: 14 jun. 2025.
    • APA

      Gabrick, E. C., Brugnago, E. L., Souza, S. L. T. de, Viana, R. L., Caldas, I. L., Batista, A. M., et al. (2024). Impact of periodic vaccination in SEIRS seasonal model. Chaos, 34( 1). doi:10.1063/5.0169834
    • NLM

      Gabrick EC, Brugnago EL, Souza SLT de, Viana RL, Caldas IL, Batista AM, Kurths J, Szezech Jr. JD, Iarosz KC. Impact of periodic vaccination in SEIRS seasonal model [Internet]. Chaos. 2024 ; 34( 1):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0169834
    • Vancouver

      Gabrick EC, Brugnago EL, Souza SLT de, Viana RL, Caldas IL, Batista AM, Kurths J, Szezech Jr. JD, Iarosz KC. Impact of periodic vaccination in SEIRS seasonal model [Internet]. Chaos. 2024 ; 34( 1):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0169834
  • Source: Chaos, Solitons & Fractals. Unidade: IF

    Assunto: NEUROCIÊNCIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PROTACHEVICZ, Paulo Ricardo et al. Analytical solutions for the short-term plasticity. Chaos, Solitons & Fractals, v. 181, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2024.114678. Acesso em: 14 jun. 2025.
    • APA

      Protachevicz, P. R., Batista, A. M., Caldas, I. L., & Baptista, M. S. (2024). Analytical solutions for the short-term plasticity. Chaos, Solitons & Fractals, 181. doi:10.1016/j.chaos.2024.114678
    • NLM

      Protachevicz PR, Batista AM, Caldas IL, Baptista MS. Analytical solutions for the short-term plasticity [Internet]. Chaos, Solitons & Fractals. 2024 ; 181[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2024.114678
    • Vancouver

      Protachevicz PR, Batista AM, Caldas IL, Baptista MS. Analytical solutions for the short-term plasticity [Internet]. Chaos, Solitons & Fractals. 2024 ; 181[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2024.114678
  • Unidade: IF

    Assunto: SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUGNAINE, Michele et al. Isochronous bifurcations in a two-parameter twist map. 2024Tradução . . Disponível em: https://doi.org/10.1103/PhysRevE.110.024206. Acesso em: 14 jun. 2025.
    • APA

      Mugnaine, M., Leal, B. B., Caldas, I. L., Almeida, A. M. O. de, & Viana, R. L. (2024). Isochronous bifurcations in a two-parameter twist map. doi:10.1103/PhysRevE.110.024206
    • NLM

      Mugnaine M, Leal BB, Caldas IL, Almeida AMO de, Viana RL. Isochronous bifurcations in a two-parameter twist map [Internet]. 2024 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.110.024206
    • Vancouver

      Mugnaine M, Leal BB, Caldas IL, Almeida AMO de, Viana RL. Isochronous bifurcations in a two-parameter twist map [Internet]. 2024 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.110.024206
  • Source: Chaos. Unidade: IF

    Assunto: SIMETRIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAZAROTTO, Matheus Jean e CALDAS, Iberê Luiz e ELSKENS, Yves. Island myriads in periodic potentials. Chaos, v. 34, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0185891. Acesso em: 14 jun. 2025.
    • APA

      Lazarotto, M. J., Caldas, I. L., & Elskens, Y. (2024). Island myriads in periodic potentials. Chaos, 34. doi:10.1063/5.0185891
    • NLM

      Lazarotto MJ, Caldas IL, Elskens Y. Island myriads in periodic potentials [Internet]. Chaos. 2024 ; 34[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0185891
    • Vancouver

      Lazarotto MJ, Caldas IL, Elskens Y. Island myriads in periodic potentials [Internet]. Chaos. 2024 ; 34[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0185891
  • Source: Journal of Applied Nonlinear Dynamics. Unidade: IF

    Assunto: CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATHIAS, Amanda C et al. Fractal Escape Basins for Magnetic Field Lines in Fusion Plasma Devices. Journal of Applied Nonlinear Dynamics, v. 12, n. 4, p. 723--738, 2023Tradução . . Disponível em: https://doi.org/10.5890/JAND.2023.12.007. Acesso em: 14 jun. 2025.
    • APA

      Mathias, A. C., Souza, L. C. de, Schelin, A. R., Caldas, I. L., & Viana, R. L. (2023). Fractal Escape Basins for Magnetic Field Lines in Fusion Plasma Devices. Journal of Applied Nonlinear Dynamics, 12( 4), 723--738. doi:10.5890/JAND.2023.12.007
    • NLM

      Mathias AC, Souza LC de, Schelin AR, Caldas IL, Viana RL. Fractal Escape Basins for Magnetic Field Lines in Fusion Plasma Devices [Internet]. Journal of Applied Nonlinear Dynamics. 2023 ; 12( 4): 723--738.[citado 2025 jun. 14 ] Available from: https://doi.org/10.5890/JAND.2023.12.007
    • Vancouver

      Mathias AC, Souza LC de, Schelin AR, Caldas IL, Viana RL. Fractal Escape Basins for Magnetic Field Lines in Fusion Plasma Devices [Internet]. Journal of Applied Nonlinear Dynamics. 2023 ; 12( 4): 723--738.[citado 2025 jun. 14 ] Available from: https://doi.org/10.5890/JAND.2023.12.007
  • Source: Fundamental Plasma Physics. Unidade: IF

    Subjects: FÍSICA DE PLASMAS, TOKAMAKS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OSORIO-QUIROGA, Leonardo A et al. Shaping the edge radial electric field to create shearless transport barriers in tokamaks. Fundamental Plasma Physics, v. 6, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.fpp.2023.100023. Acesso em: 14 jun. 2025.
    • APA

      Osorio-Quiroga, L. A., Roberto, M., Caldas, I. L., Viana, R. L., & Elskens, Y. (2023). Shaping the edge radial electric field to create shearless transport barriers in tokamaks. Fundamental Plasma Physics, 6. doi:10.1016/j.fpp.2023.100023
    • NLM

      Osorio-Quiroga LA, Roberto M, Caldas IL, Viana RL, Elskens Y. Shaping the edge radial electric field to create shearless transport barriers in tokamaks [Internet]. Fundamental Plasma Physics. 2023 ; 6[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.fpp.2023.100023
    • Vancouver

      Osorio-Quiroga LA, Roberto M, Caldas IL, Viana RL, Elskens Y. Shaping the edge radial electric field to create shearless transport barriers in tokamaks [Internet]. Fundamental Plasma Physics. 2023 ; 6[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.fpp.2023.100023
  • Source: Chaos, Solitons & Fractals. Unidade: IF

    Assunto: SINCRONIZAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Adriane da Silva et al. The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks. Chaos, Solitons & Fractals, v. 167, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2023.113122. Acesso em: 14 jun. 2025.
    • APA

      Reis, A. da S., Brugnago, E. L., Viana, R. L., Batista, A. M., Iarosz, K. C., Ferrari, F. A. S., & Caldas, I. L. (2023). The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks. Chaos, Solitons & Fractals, 167. doi:10.1016/j.chaos.2023.113122
    • NLM

      Reis A da S, Brugnago EL, Viana RL, Batista AM, Iarosz KC, Ferrari FAS, Caldas IL. The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks [Internet]. Chaos, Solitons & Fractals. 2023 ; 167[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.113122
    • Vancouver

      Reis A da S, Brugnago EL, Viana RL, Batista AM, Iarosz KC, Ferrari FAS, Caldas IL. The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks [Internet]. Chaos, Solitons & Fractals. 2023 ; 167[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.113122
  • Source: Physical Review E. Unidade: IF

    Assunto: ELÉTRONS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENETTI, Monã Hegel e SILVEIRA, Francisco Eugenio Mendonça da e CALDAS, Iberê Luiz. Fundamental solution of diffusion equation for Kappa gas: Diffusion length for suprathermal electrons in solar wind. Physical Review E, v. 107, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevE.107.055212. Acesso em: 14 jun. 2025.
    • APA

      Benetti, M. H., Silveira, F. E. M. da, & Caldas, I. L. (2023). Fundamental solution of diffusion equation for Kappa gas: Diffusion length for suprathermal electrons in solar wind. Physical Review E, 107. doi:10.1103/PhysRevE.107.055212
    • NLM

      Benetti MH, Silveira FEM da, Caldas IL. Fundamental solution of diffusion equation for Kappa gas: Diffusion length for suprathermal electrons in solar wind [Internet]. Physical Review E. 2023 ; 107[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.107.055212
    • Vancouver

      Benetti MH, Silveira FEM da, Caldas IL. Fundamental solution of diffusion equation for Kappa gas: Diffusion length for suprathermal electrons in solar wind [Internet]. Physical Review E. 2023 ; 107[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.107.055212
  • Source: Physical Review E. Unidade: IF

    Assunto: COMPORTAMENTO CAÓTICO NOS SISTEMAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARONI, Rodrigo Simile et al. Chaotic saddles and interior crises in a dissipative nontwist system. Physical Review E, v. 107, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevE.107.024216. Acesso em: 14 jun. 2025.
    • APA

      Baroni, R. S., Carvalho, R. E. de, Caldas, I. L., Viana, R. L., & Morrison, P. J. (2023). Chaotic saddles and interior crises in a dissipative nontwist system. Physical Review E, 107. doi:10.1103/PhysRevE.107.024216
    • NLM

      Baroni RS, Carvalho RE de, Caldas IL, Viana RL, Morrison PJ. Chaotic saddles and interior crises in a dissipative nontwist system [Internet]. Physical Review E. 2023 ; 107[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.107.024216
    • Vancouver

      Baroni RS, Carvalho RE de, Caldas IL, Viana RL, Morrison PJ. Chaotic saddles and interior crises in a dissipative nontwist system [Internet]. Physical Review E. 2023 ; 107[citado 2025 jun. 14 ] Available from: https://doi.org/10.1103/PhysRevE.107.024216
  • Source: Chaos, Solitons & Fractals. Unidade: IF

    Assunto: EPIDEMIOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÁVARO, Vitor H A et al. Epidemiological model based on networks with non-local coupling. Chaos, Solitons & Fractals, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2023.114256. Acesso em: 14 jun. 2025.
    • APA

      Fávaro, V. H. A., Gabrick, E. C., Batista, A. M., Caldas, I. L., & Viana, R. L. (2023). Epidemiological model based on networks with non-local coupling. Chaos, Solitons & Fractals. doi:10.1016/j.chaos.2023.114256
    • NLM

      Fávaro VHA, Gabrick EC, Batista AM, Caldas IL, Viana RL. Epidemiological model based on networks with non-local coupling [Internet]. Chaos, Solitons & Fractals. 2023 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.114256
    • Vancouver

      Fávaro VHA, Gabrick EC, Batista AM, Caldas IL, Viana RL. Epidemiological model based on networks with non-local coupling [Internet]. Chaos, Solitons & Fractals. 2023 ;[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.114256
  • Source: Chaos, Solitons & Fractals. Unidade: IF

    Subjects: MODELOS MATEMÁTICOS, INTERDISCIPLINARIDADE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PROTACHEVICZ, Paulo Ricardo et al. Plastic neural network with transmission delays promotes equivalence between function and structure. Chaos, Solitons & Fractals, v. 171, n. ju 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2023.113480. Acesso em: 14 jun. 2025.
    • APA

      Protachevicz, P. R., Borges, F. da S., Batista, A. M., Baptista, M. da S., Caldas, I. L., Macau, E. E. N., & Lameu, E. L. (2023). Plastic neural network with transmission delays promotes equivalence between function and structure. Chaos, Solitons & Fractals, 171( ju 2023). doi:10.1016/j.chaos.2023.113480
    • NLM

      Protachevicz PR, Borges F da S, Batista AM, Baptista M da S, Caldas IL, Macau EEN, Lameu EL. Plastic neural network with transmission delays promotes equivalence between function and structure [Internet]. Chaos, Solitons & Fractals. 2023 ; 171( ju 2023):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.113480
    • Vancouver

      Protachevicz PR, Borges F da S, Batista AM, Baptista M da S, Caldas IL, Macau EEN, Lameu EL. Plastic neural network with transmission delays promotes equivalence between function and structure [Internet]. Chaos, Solitons & Fractals. 2023 ; 171( ju 2023):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1016/j.chaos.2023.113480
  • Source: Fractal and Fractional. Unidade: IF

    Subjects: BIOFÍSICA, EQUAÇÕES, SINGULARIDADES, EQUAÇÕES DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GABRICK, Enrique C. et al. Fractional diffusion equation under singular and non-singular kernel and its stability. Fractal and Fractional, v. no 2023, n. 11, 2023Tradução . . Disponível em: https://doi.org/10.3390/fractalfract7110792. Acesso em: 14 jun. 2025.
    • APA

      Gabrick, E. C., Protachevicz, P. R., Lenzi, E. K., Sayari, E., Trobia, J., Lenzi, M. K., et al. (2023). Fractional diffusion equation under singular and non-singular kernel and its stability. Fractal and Fractional, no 2023( 11). doi:10.3390/fractalfract7110792
    • NLM

      Gabrick EC, Protachevicz PR, Lenzi EK, Sayari E, Trobia J, Lenzi MK, Borges FS, Batista AM, Caldas IL. Fractional diffusion equation under singular and non-singular kernel and its stability [Internet]. Fractal and Fractional. 2023 ; no 2023( 11):[citado 2025 jun. 14 ] Available from: https://doi.org/10.3390/fractalfract7110792
    • Vancouver

      Gabrick EC, Protachevicz PR, Lenzi EK, Sayari E, Trobia J, Lenzi MK, Borges FS, Batista AM, Caldas IL. Fractional diffusion equation under singular and non-singular kernel and its stability [Internet]. Fractal and Fractional. 2023 ; no 2023( 11):[citado 2025 jun. 14 ] Available from: https://doi.org/10.3390/fractalfract7110792
  • Source: Brazilian Journal of Physics. Unidade: IF

    Subjects: ESTÁTICA, CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GABRICK, Enrique C. e VIANA, Ricardo Luiz e CALDAS, Iberê Luiz. Fractional dynamics and recurrence analysis in cancer model. Brazilian Journal of Physics, v. 53, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13538-023-01359-w. Acesso em: 14 jun. 2025.
    • APA

      Gabrick, E. C., Viana, R. L., & Caldas, I. L. (2023). Fractional dynamics and recurrence analysis in cancer model. Brazilian Journal of Physics, 53. doi:10.1007/s13538-023-01359-w
    • NLM

      Gabrick EC, Viana RL, Caldas IL. Fractional dynamics and recurrence analysis in cancer model [Internet]. Brazilian Journal of Physics. 2023 ; 53[citado 2025 jun. 14 ] Available from: https://doi.org/10.1007/s13538-023-01359-w
    • Vancouver

      Gabrick EC, Viana RL, Caldas IL. Fractional dynamics and recurrence analysis in cancer model [Internet]. Brazilian Journal of Physics. 2023 ; 53[citado 2025 jun. 14 ] Available from: https://doi.org/10.1007/s13538-023-01359-w
  • Source: Chaos: An Interdisciplinary Journal of Nonlinear Science. Unidade: IF

    Subjects: TEORIA DO CAOS, ENTROPIA, MECÂNICA HAMILTONIANA, SISTEMAS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALES, Matheus Rolim et al. Stickiness and recurrence plots: An entropy-based approach. Chaos: An Interdisciplinary Journal of Nonlinear Science, v. 33, n. 3, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0140613. Acesso em: 14 jun. 2025.
    • APA

      Sales, M. R., Mugnaine, M., Szezech, J. D., Viana, R. L., Caldas, I. L., Marwan, N., & Kurths, J. (2023). Stickiness and recurrence plots: An entropy-based approach. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33( 3). doi:10.1063/5.0140613
    • NLM

      Sales MR, Mugnaine M, Szezech JD, Viana RL, Caldas IL, Marwan N, Kurths J. Stickiness and recurrence plots: An entropy-based approach [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023 ; 33( 3):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0140613
    • Vancouver

      Sales MR, Mugnaine M, Szezech JD, Viana RL, Caldas IL, Marwan N, Kurths J. Stickiness and recurrence plots: An entropy-based approach [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023 ; 33( 3):[citado 2025 jun. 14 ] Available from: https://doi.org/10.1063/5.0140613

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025