Filtros : "Shestakov, Ivan P" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich; SHASHKOV, Oleg Vladimirovich; SHESTAKOV, Ivan P. Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, New York, v. 572, p. 111-128, 2021. Disponível em: < https://doi.org/10.1016/j.jalgebra.2020.12.009 > DOI: 10.1016/j.jalgebra.2020.12.009.
    • APA

      Pchelintsev, S. V., Shashkov, O. V., & Shestakov, I. P. (2021). Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, 572, 111-128. doi:10.1016/j.jalgebra.2020.12.009
    • NLM

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
    • Vancouver

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZHANG, Zerui. Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, Amsterdam, v. 225, n. 8, 2021. Disponível em: < https://doi.org/10.1016/j.jpaa.2020.106636 > DOI: 10.1016/j.jpaa.2020.106636.
    • APA

      Shestakov, I. P., & Zhang, Z. (2021). Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, 225( 8). doi:10.1016/j.jpaa.2020.106636
    • NLM

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):Available from: https://doi.org/10.1016/j.jpaa.2020.106636
    • Vancouver

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):Available from: https://doi.org/10.1016/j.jpaa.2020.106636
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G.; MURAKAMI, Lúcia Satie Ikemoto; SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, New York, Elsevier, v. 621, p. 235-253, 2021. Disponível em: < https://doi.org/10.1016/j.laa.2021.03.023 > DOI: 10.1016/j.laa.2021.03.023.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, 621, 235-253. doi:10.1016/j.laa.2021.03.023
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.Available from: https://doi.org/10.1016/j.laa.2021.03.023
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.Available from: https://doi.org/10.1016/j.laa.2021.03.023
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando; SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 225, n. 11, p. 1-14, 2021. Disponível em: < https://doi.org/10.1016/j.jpaa.2021.106741 > DOI: 10.1016/j.jpaa.2021.106741.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Source: Archiv der Mathematik. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Disponível em 2022-01-14Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZAICEV, Mikhail. Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, Cham, 2021. Disponível em: < https://doi.org/10.1007/s00013-020-01567-9 > DOI: 10.1007/s00013-020-01567-9.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik. doi:10.1007/s00013-020-01567-9
    • NLM

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ;Available from: https://doi.org/10.1007/s00013-020-01567-9
    • Vancouver

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ;Available from: https://doi.org/10.1007/s00013-020-01567-9
  • Source: Siberian Mathematical Journal. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P.; SHESTAKOV, Ivan P. On the Right-Symmetric Algebras with a Unital Matrix Subalgebra. Siberian Mathematical Journal, New York, v. 62, p. 138-147, 2021. Disponível em: < https://doi.org/10.1134/S0037446621010158 > DOI: 10.1134/S0037446621010158.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). On the Right-Symmetric Algebras with a Unital Matrix Subalgebra. Siberian Mathematical Journal, 62, 138-147. doi:10.1134/S0037446621010158
    • NLM

      Pozhidaev AP, Shestakov IP. On the Right-Symmetric Algebras with a Unital Matrix Subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.Available from: https://doi.org/10.1134/S0037446621010158
    • Vancouver

      Pozhidaev AP, Shestakov IP. On the Right-Symmetric Algebras with a Unital Matrix Subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.Available from: https://doi.org/10.1134/S0037446621010158
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, New York, v. 48, n. 12, p. 5412-5420, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1789652 > DOI: 10.1080/00927872.2020.1789652.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Source: Online seminar. Conference titles: Lie and Jordan algebras and their representations : online seminar. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P. Coordination theorems for certain non-associative algebras. Anais.. IME-USP: 2020, 2020.
    • APA

      Shestakov, I. P. (2020). Coordination theorems for certain non-associative algebras. In Online seminar. IME-USP: 2020.
    • NLM

      Shestakov IP. Coordination theorems for certain non-associative algebras. Online seminar. 2020 ;((49 mi 50 seg.):
    • Vancouver

      Shestakov IP. Coordination theorems for certain non-associative algebras. Online seminar. 2020 ;((49 mi 50 seg.):
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale; SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, New York, v. 48, n. 7, p. 3091-3098, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1729363 > DOI: 10.1080/00927872.2020.1729363.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Glasgow Mathematical Journal. Conference titles: Workshop on Nonassociative algebras and their applications. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ, Consuelo; SHESTAKOV, Ivan P. Jordan bimodules over the superalgebra M1|1. Glasgow Mathematical Journal[S.l: s.n.], 2020.Disponível em: DOI: 10.1017/S0017089519000247.
    • APA

      Martínez, C., & Shestakov, I. P. (2020). Jordan bimodules over the superalgebra M1|1. Glasgow Mathematical Journal. Cambridge: Cambridge University Press. doi:10.1017/S0017089519000247
    • NLM

      Martínez C, Shestakov IP. Jordan bimodules over the superalgebra M1|1 [Internet]. Glasgow Mathematical Journal. 2020 ; 62 S6-S13.Available from: https://doi.org/10.1017/S0017089519000247
    • Vancouver

      Martínez C, Shestakov IP. Jordan bimodules over the superalgebra M1|1 [Internet]. Glasgow Mathematical Journal. 2020 ; 62 S6-S13.Available from: https://doi.org/10.1017/S0017089519000247
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, DISTRIBUIÇÃO DE POISSON

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P; SHESTAKOV, Ivan P. Simple finite-dimensional modular noncommutative Jordan superalgebras. Journal of Pure and Applied Algebra, Amsterdam, v. 223, p. 2320-2344, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2018.07.017 > DOI: 10.1016/j.jpaa.2018.07.017.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2019). Simple finite-dimensional modular noncommutative Jordan superalgebras. Journal of Pure and Applied Algebra, 223, 2320-2344. doi:10.1016/j.jpaa.2018.07.017
    • NLM

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional modular noncommutative Jordan superalgebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223 2320-2344.Available from: http://dx.doi.org/10.1016/j.jpaa.2018.07.017
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional modular noncommutative Jordan superalgebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223 2320-2344.Available from: http://dx.doi.org/10.1016/j.jpaa.2018.07.017
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: LAÇOS, GRUPOS ALGÉBRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRABETTI, Alessandra; SHESTAKOV, Ivan P. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra. Advances in Mathematics, New York, v. 351, p. 495-569, 2019. Disponível em: < http://dx.doi.org/10.1016/j.aim.2019.04.053 > DOI: 10.1016/j.aim.2019.04.053.
    • APA

      Frabetti, A., & Shestakov, I. P. (2019). Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra. Advances in Mathematics, 351, 495-569. doi:10.1016/j.aim.2019.04.053
    • NLM

      Frabetti A, Shestakov IP. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra [Internet]. Advances in Mathematics. 2019 ; 351 495-569.Available from: http://dx.doi.org/10.1016/j.aim.2019.04.053
    • Vancouver

      Frabetti A, Shestakov IP. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra [Internet]. Advances in Mathematics. 2019 ; 351 495-569.Available from: http://dx.doi.org/10.1016/j.aim.2019.04.053
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor; SHESTAKOV, Ivan P. On Jordan doubles of slow growth of Lie superalgebras. São Paulo Journal of Mathematical Sciences, São Paulo, v. 13, n. 1, p. 158-176, 2019. Disponível em: < http://dx.doi.org/10.1007/s40863-019-00122-x > DOI: 10.1007/s40863-019-00122-x.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2019). On Jordan doubles of slow growth of Lie superalgebras. São Paulo Journal of Mathematical Sciences, 13( 1), 158-176. doi:10.1007/s40863-019-00122-x
    • NLM

      Petrogradsky V, Shestakov IP. On Jordan doubles of slow growth of Lie superalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 158-176.Available from: http://dx.doi.org/10.1007/s40863-019-00122-x
    • Vancouver

      Petrogradsky V, Shestakov IP. On Jordan doubles of slow growth of Lie superalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 158-176.Available from: http://dx.doi.org/10.1007/s40863-019-00122-x
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEINFELD, E.; SHESTAKOV, Ivan P. Associators and commutators in alternative algebras. Algebra and Logic, New York, v. 58, n. 4, p. 322-326, 2019. Disponível em: < http://dx.doi.org/10.1007/s10469-019-09553-z > DOI: 10.1007/s10469-019-09553-z.
    • APA

      Kleinfeld, E., & Shestakov, I. P. (2019). Associators and commutators in alternative algebras. Algebra and Logic, 58( 4), 322-326. doi:10.1007/s10469-019-09553-z
    • NLM

      Kleinfeld E, Shestakov IP. Associators and commutators in alternative algebras [Internet]. Algebra and Logic. 2019 ; 58( 4): 322-326.Available from: http://dx.doi.org/10.1007/s10469-019-09553-z
    • Vancouver

      Kleinfeld E, Shestakov IP. Associators and commutators in alternative algebras [Internet]. Algebra and Logic. 2019 ; 58( 4): 322-326.Available from: http://dx.doi.org/10.1007/s10469-019-09553-z
  • Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RASSKAZOVA, Diana; SHESTAKOV, Ivan P; GRICHKOV, Alexandre. Geometrias finitas, loops e quasigrupos relacionados. 2018.Universidade de São Paulo, São Paulo, 2018. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/ >.
    • APA

      Rasskazova, D., Shestakov, I. P., & Grichkov, A. (2018). Geometrias finitas, loops e quasigrupos relacionados. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • NLM

      Rasskazova D, Shestakov IP, Grichkov A. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • Vancouver

      Rasskazova D, Shestakov IP, Grichkov A. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
  • Source: Transformation Groups. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZUBKOV, A. N; SHESTAKOV, Ivan P. Invariants of G2 and spin(7) in positive characteristic. Transformation Groups, Basel, v. 23, n. 2, p. 555–588, 2018. Disponível em: < https://dx.doi.org/10.1007/s00031-017-9435-8 > DOI: 10.1007/s00031-017-9435-8.
    • APA

      Zubkov, A. N., & Shestakov, I. P. (2018). Invariants of G2 and spin(7) in positive characteristic. Transformation Groups, 23( 2), 555–588. doi:10.1007/s00031-017-9435-8
    • NLM

      Zubkov AN, Shestakov IP. Invariants of G2 and spin(7) in positive characteristic [Internet]. Transformation Groups. 2018 ; 23( 2): 555–588.Available from: https://dx.doi.org/10.1007/s00031-017-9435-8
    • Vancouver

      Zubkov AN, Shestakov IP. Invariants of G2 and spin(7) in positive characteristic [Internet]. Transformation Groups. 2018 ; 23( 2): 555–588.Available from: https://dx.doi.org/10.1007/s00031-017-9435-8
  • Source: Journal of Algebra. Unidade: IME

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRUSKIEWITSCH, Nicolás; ELDUQUE, Alberto; KHUKHRO, Evgenii I.; SHESTAKOV, Ivan P. Special issue in honor of Efim Zelmanov. [Introdução]. Journal of Algebra[S.l: s.n.], 2018.Disponível em: DOI: 10.1016/j.jalgebra.2018.01.012.
    • APA

      Andruskiewitsch, N., Elduque, A., Khukhro, E. I., & Shestakov, I. P. (2018). Special issue in honor of Efim Zelmanov. [Introdução]. Journal of Algebra. New York. doi:10.1016/j.jalgebra.2018.01.012
    • NLM

      Andruskiewitsch N, Elduque A, Khukhro EI, Shestakov IP. Special issue in honor of Efim Zelmanov. [Introdução] [Internet]. Journal of Algebra. 2018 ; 500 1-2.Available from: http://dx.doi.org/10.1016/j.jalgebra.2018.01.012
    • Vancouver

      Andruskiewitsch N, Elduque A, Khukhro EI, Shestakov IP. Special issue in honor of Efim Zelmanov. [Introdução] [Internet]. Journal of Algebra. 2018 ; 500 1-2.Available from: http://dx.doi.org/10.1016/j.jalgebra.2018.01.012
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORNEV, A. I; SHESTAKOV, Ivan P. On associative representations of non-associative algebras. Journal of Algebra and Its Applications, Singapore, v. 17, n. 3, p. 1850051-18500512, 2018. Disponível em: < https://doi.org/10.1142/S0219498818500512 > DOI: 10.1142/S0219498818500512.
    • APA

      Kornev, A. I., & Shestakov, I. P. (2018). On associative representations of non-associative algebras. Journal of Algebra and Its Applications, 17( 3), 1850051-18500512. doi:10.1142/S0219498818500512
    • NLM

      Kornev AI, Shestakov IP. On associative representations of non-associative algebras [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 3): 1850051-18500512.Available from: https://doi.org/10.1142/S0219498818500512
    • Vancouver

      Kornev AI, Shestakov IP. On associative representations of non-associative algebras [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 3): 1850051-18500512.Available from: https://doi.org/10.1142/S0219498818500512
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZELMANOV, Efim. A finite presentation of Jordan algebras. International Journal of Algebra and Computation, Singapore, v. 28, n. 08, p. 1705-1716, 2018. Disponível em: < http://dx.doi.org/10.1142/s0218196718400155 > DOI: 10.1142/s0218196718400155.
    • APA

      Shestakov, I. P., & Zelmanov, E. (2018). A finite presentation of Jordan algebras. International Journal of Algebra and Computation, 28( 08), 1705-1716. doi:10.1142/s0218196718400155
    • NLM

      Shestakov IP, Zelmanov E. A finite presentation of Jordan algebras [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 08): 1705-1716.Available from: http://dx.doi.org/10.1142/s0218196718400155
    • Vancouver

      Shestakov IP, Zelmanov E. A finite presentation of Jordan algebras [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 08): 1705-1716.Available from: http://dx.doi.org/10.1142/s0218196718400155
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANQUELA, José A.; CORTÉS, Teresa; SHESTAKOV, Ivan P. Commuting U-operators and nondegenerate imbeddings of Jordan systems. Israel Journal of Mathematics, Jerusalem, v. 225, n. 2, p. 871–887, 2018. Disponível em: < http://dx.doi.org/10.1007/s11856-018-1681-5 > DOI: 10.1007/s11856-018-1681-5.
    • APA

      Anquela, J. A., Cortés, T., & Shestakov, I. P. (2018). Commuting U-operators and nondegenerate imbeddings of Jordan systems. Israel Journal of Mathematics, 225( 2), 871–887. doi:10.1007/s11856-018-1681-5
    • NLM

      Anquela JA, Cortés T, Shestakov IP. Commuting U-operators and nondegenerate imbeddings of Jordan systems [Internet]. Israel Journal of Mathematics. 2018 ; 225( 2): 871–887.Available from: http://dx.doi.org/10.1007/s11856-018-1681-5
    • Vancouver

      Anquela JA, Cortés T, Shestakov IP. Commuting U-operators and nondegenerate imbeddings of Jordan systems [Internet]. Israel Journal of Mathematics. 2018 ; 225( 2): 871–887.Available from: http://dx.doi.org/10.1007/s11856-018-1681-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021