Filtros : "Menegatto, Valdir Antônio" Limpar

Filtros



Refine with date range


  • Source: Canadian Mathematical Bulletin. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, GRUPOS ABELIANOS, TRANSFORMADA DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio; OLIVEIRA, Claudemir Pinheiro de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups. Canadian Mathematical Bulletin, Cambridge, Cambridge University Press, v. 63, n. 4, p. 705-715, 2020. Disponível em: < https://doi.org/10.4153/S0008439519000663 > DOI: 10.4153/S0008439519000663.
    • APA

      Menegatto, V. A., & Oliveira, C. P. de. (2020). Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups. Canadian Mathematical Bulletin, 63( 4), 705-715. doi:10.4153/S0008439519000663
    • NLM

      Menegatto VA, Oliveira CP de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups [Internet]. Canadian Mathematical Bulletin. 2020 ; 63( 4): 705-715.Available from: https://doi.org/10.4153/S0008439519000663
    • Vancouver

      Menegatto VA, Oliveira CP de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups [Internet]. Canadian Mathematical Bulletin. 2020 ; 63( 4): 705-715.Available from: https://doi.org/10.4153/S0008439519000663
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ESPAÇOS MÉTRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões; MENEGATTO, Valdir Antônio. A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, Kyiv, National Academy of Sciences of Ukraine, Institute of Mathematics, v. 16, p. 1-15, 2020. Disponível em: < https://doi.org/10.3842/SIGMA.2020.117 > DOI: 10.3842/SIGMA.2020.117.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2020). A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 16, 1-15. doi:10.3842/SIGMA.2020.117
    • NLM

      Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.Available from: https://doi.org/10.3842/SIGMA.2020.117
    • Vancouver

      Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.Available from: https://doi.org/10.3842/SIGMA.2020.117
  • Source: Constructive Mathematical Analysis. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ISOMETRIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio; OLIVEIRA, Claudemir Pinheiro de; PORCU, Emilio. Gneiting class, semi-metric spaces and isometric embeddings. Constructive Mathematical Analysis, Konya, CMA, v. 3, n. 2, p. 85-95, 2020. Disponível em: < https://doi.org/10.33205/cma.712049 > DOI: 10.33205/cma.712049.
    • APA

      Menegatto, V. A., Oliveira, C. P. de, & Porcu, E. (2020). Gneiting class, semi-metric spaces and isometric embeddings. Constructive Mathematical Analysis, 3( 2), 85-95. doi:10.33205/cma.712049
    • NLM

      Menegatto VA, Oliveira CP de, Porcu E. Gneiting class, semi-metric spaces and isometric embeddings [Internet]. Constructive Mathematical Analysis. 2020 ; 3( 2): 85-95.Available from: https://doi.org/10.33205/cma.712049
    • Vancouver

      Menegatto VA, Oliveira CP de, Porcu E. Gneiting class, semi-metric spaces and isometric embeddings [Internet]. Constructive Mathematical Analysis. 2020 ; 3( 2): 85-95.Available from: https://doi.org/10.33205/cma.712049
  • Source: Constructive Approximation. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo; MENEGATTO, Valdir Antônio. Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, New York, Springer, v. 52, n. 1, p. 65-92, 2020. Disponível em: < https://doi.org/10.1007/s00365-019-09478-x > DOI: 10.1007/s00365-019-09478-x.
    • APA

      Guella, J. C., & Menegatto, V. A. (2020). Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, 52( 1), 65-92. doi:10.1007/s00365-019-09478-x
    • NLM

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.Available from: https://doi.org/10.1007/s00365-019-09478-x
    • Vancouver

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.Available from: https://doi.org/10.1007/s00365-019-09478-x
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ANÁLISE HARMÔNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio. Positive definite functions on products of metric spaces via generalized Stieltjes functions. Proceedings of the American Mathematical Society, Providence, AMS, v. 148, n. 11, p. 4781-4795, 2020. Disponível em: < https://doi.org/10.1090/proc/15137 > DOI: 10.1090/proc/15137.
    • APA

      Menegatto, V. A. (2020). Positive definite functions on products of metric spaces via generalized Stieltjes functions. Proceedings of the American Mathematical Society, 148( 11), 4781-4795. doi:10.1090/proc/15137
    • NLM

      Menegatto VA. Positive definite functions on products of metric spaces via generalized Stieltjes functions [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 11): 4781-4795.Available from: https://doi.org/10.1090/proc/15137
    • Vancouver

      Menegatto VA. Positive definite functions on products of metric spaces via generalized Stieltjes functions [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 11): 4781-4795.Available from: https://doi.org/10.1090/proc/15137
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: APROXIMAÇÃO, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, PROBLEMAS DE AUTOVALORES, OPERADORES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís; MENEGATTO, Valdir Antônio. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators. Results in Mathematics, Basel, Springer, v. 74, n. 2, p. 1-18, 2019. Disponível em: < http://dx.doi.org/10.1007/s00025-019-1000-4 > DOI: 10.1007/s00025-019-1000-4.
    • APA

      Jordão, T., & Menegatto, V. A. (2019). Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators. Results in Mathematics, 74( 2), 1-18. doi:10.1007/s00025-019-1000-4
    • NLM

      Jordão T, Menegatto VA. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators [Internet]. Results in Mathematics. 2019 ; 74( 2): 1-18.Available from: http://dx.doi.org/10.1007/s00025-019-1000-4
    • Vancouver

      Jordão T, Menegatto VA. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators [Internet]. Results in Mathematics. 2019 ; 74( 2): 1-18.Available from: http://dx.doi.org/10.1007/s00025-019-1000-4
  • Source: Integral Transforms and Special Functions. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo; MENEGATTO, Valdir Antônio. Positive definite matrix functions on spheres defined by hypergeometric functions. Integral Transforms and Special Functions, Abingdon, Taylor & Francis, v. 30, n. 10, p. 774-789, 2019. Disponível em: < http://dx.doi.org/10.1080/10652469.2019.1619177 > DOI: 10.1080/10652469.2019.1619177.
    • APA

      Guella, J. C., & Menegatto, V. A. (2019). Positive definite matrix functions on spheres defined by hypergeometric functions. Integral Transforms and Special Functions, 30( 10), 774-789. doi:10.1080/10652469.2019.1619177
    • NLM

      Guella JC, Menegatto VA. Positive definite matrix functions on spheres defined by hypergeometric functions [Internet]. Integral Transforms and Special Functions. 2019 ; 30( 10): 774-789.Available from: http://dx.doi.org/10.1080/10652469.2019.1619177
    • Vancouver

      Guella JC, Menegatto VA. Positive definite matrix functions on spheres defined by hypergeometric functions [Internet]. Integral Transforms and Special Functions. 2019 ; 30( 10): 774-789.Available from: http://dx.doi.org/10.1080/10652469.2019.1619177
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES HIPERGEOMÉTRICAS, FUNÇÕES ORTOGONAIS, SÉRIES ORTOGONAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSIRI, Pier Giovanni; MENEGATTO, Valdir Antônio; PORCU, Emilio. Relations between Schoenberg coefficients on real and complex spheres of different dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, Kyiv, National Academy of Sciences of Ukraine, Institute of Mathematics, v. 15, p. 1-12, 2019. Disponível em: < http://dx.doi.org/10.3842/SIGMA.2019.004 > DOI: 10.3842/SIGMA.2019.004.
    • APA

      Bissiri, P. G., Menegatto, V. A., & Porcu, E. (2019). Relations between Schoenberg coefficients on real and complex spheres of different dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 15, 1-12. doi:10.3842/SIGMA.2019.004
    • NLM

      Bissiri PG, Menegatto VA, Porcu E. Relations between Schoenberg coefficients on real and complex spheres of different dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2019 ; 15 1-12.Available from: http://dx.doi.org/10.3842/SIGMA.2019.004
    • Vancouver

      Bissiri PG, Menegatto VA, Porcu E. Relations between Schoenberg coefficients on real and complex spheres of different dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2019 ; 15 1-12.Available from: http://dx.doi.org/10.3842/SIGMA.2019.004
  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo; MENEGATTO, Valdir Antônio. Schoenberg's theorem for positive definite functions on products: a unifying framework. Journal of Fourier Analysis and Applications, Basel, Springer/Birkhäeuser, v. 25, n. 4, p. 1424-1446, 2019. Disponível em: < http://dx.doi.org/10.1007/s00041-018-9631-5 > DOI: 10.1007/s00041-018-9631-5.
    • APA

      Guella, J. C., & Menegatto, V. A. (2019). Schoenberg's theorem for positive definite functions on products: a unifying framework. Journal of Fourier Analysis and Applications, 25( 4), 1424-1446. doi:10.1007/s00041-018-9631-5
    • NLM

      Guella JC, Menegatto VA. Schoenberg's theorem for positive definite functions on products: a unifying framework [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 4): 1424-1446.Available from: http://dx.doi.org/10.1007/s00041-018-9631-5
    • Vancouver

      Guella JC, Menegatto VA. Schoenberg's theorem for positive definite functions on products: a unifying framework [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 4): 1424-1446.Available from: http://dx.doi.org/10.1007/s00041-018-9631-5
  • Source: Journal of Multivariate Analysis. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, INFERÊNCIA ESTATÍSTICA, GEOESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo; MENEGATTO, Valdir Antônio; PORCU, Emilio. Strictly positive definite multivariate covariance functions on spheres. Journal of Multivariate Analysis, San Diego, Elsevier, v. 166, p. 150-159, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmva.2018.03.001 > DOI: 10.1016/j.jmva.2018.03.001.
    • APA

      Guella, J. C., Menegatto, V. A., & Porcu, E. (2018). Strictly positive definite multivariate covariance functions on spheres. Journal of Multivariate Analysis, 166, 150-159. doi:10.1016/j.jmva.2018.03.001
    • NLM

      Guella JC, Menegatto VA, Porcu E. Strictly positive definite multivariate covariance functions on spheres [Internet]. Journal of Multivariate Analysis. 2018 ; 166 150-159.Available from: http://dx.doi.org/10.1016/j.jmva.2018.03.001
    • Vancouver

      Guella JC, Menegatto VA, Porcu E. Strictly positive definite multivariate covariance functions on spheres [Internet]. Journal of Multivariate Analysis. 2018 ; 166 150-159.Available from: http://dx.doi.org/10.1016/j.jmva.2018.03.001
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA, SÉRIES DE FOURIER, SÉRIES DE JACOBI

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio. A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, Providence, AMS, v. 146, n. 5, p. 2027-2038, 2018. Disponível em: < http://dx.doi.org/10.1090/proc/13889 > DOI: 10.1090/proc/13889.
    • APA

      Guella, J. C., & Menegatto, V. A. (2018). A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, 146( 5), 2027-2038. doi:10.1090/proc/13889
    • NLM

      Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.Available from: http://dx.doi.org/10.1090/proc/13889
    • Vancouver

      Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.Available from: http://dx.doi.org/10.1090/proc/13889
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER, POLINÔMIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio. Unitarily invariant strictly positive definite kernels on spheres. Positivity, Dordrecht, Springer, v. 22, n. 1, p. 91-103, 2018. Disponível em: < http://dx.doi.org/10.1007/s11117-017-0502-0 > DOI: 10.1007/s11117-017-0502-0.
    • APA

      Guella, J. C., & Menegatto, V. A. (2018). Unitarily invariant strictly positive definite kernels on spheres. Positivity, 22( 1), 91-103. doi:10.1007/s11117-017-0502-0
    • NLM

      Guella JC, Menegatto VA. Unitarily invariant strictly positive definite kernels on spheres [Internet]. Positivity. 2018 ; 22( 1): 91-103.Available from: http://dx.doi.org/10.1007/s11117-017-0502-0
    • Vancouver

      Guella JC, Menegatto VA. Unitarily invariant strictly positive definite kernels on spheres [Internet]. Positivity. 2018 ; 22( 1): 91-103.Available from: http://dx.doi.org/10.1007/s11117-017-0502-0
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONFIM, Rafaela N; GUELLA, Jean Carlo; MENEGATTO, Valdir Antônio. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, Kyiv, National Academy of Sciences of Ukraine, Institute of Mathematics, v. 14, p. 1-14, 2018. Disponível em: < http://dx.doi.org/10.3842/SIGMA.2018.112 > DOI: 10.3842/SIGMA.2018.112.
    • APA

      Bonfim, R. N., Guella, J. C., & Menegatto, V. A. (2018). Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 14, 1-14. doi:10.3842/SIGMA.2018.112
    • NLM

      Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.Available from: http://dx.doi.org/10.3842/SIGMA.2018.112
    • Vancouver

      Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.Available from: http://dx.doi.org/10.3842/SIGMA.2018.112
  • Source: Constructive Approximation. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER, FUNÇÕES HIPERGEOMÉTRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J; MENEGATTO, Valdir Antônio. Strictly positive definite kernels on the torus. Constructive Approximation, New York, Springer, v. 46, n. 2, p. 271-284, 2017. Disponível em: < http://dx.doi.org/10.1007/s00365-016-9354-2 > DOI: 10.1007/s00365-016-9354-2.
    • APA

      Guella, J., & Menegatto, V. A. (2017). Strictly positive definite kernels on the torus. Constructive Approximation, 46( 2), 271-284. doi:10.1007/s00365-016-9354-2
    • NLM

      Guella J, Menegatto VA. Strictly positive definite kernels on the torus [Internet]. Constructive Approximation. 2017 ; 46( 2): 271-284.Available from: http://dx.doi.org/10.1007/s00365-016-9354-2
    • Vancouver

      Guella J, Menegatto VA. Strictly positive definite kernels on the torus [Internet]. Constructive Approximation. 2017 ; 46( 2): 271-284.Available from: http://dx.doi.org/10.1007/s00365-016-9354-2
  • Source: Integral Transforms and Special Functions. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S; MENEGATTO, Valdir Antônio. Strict positive definiteness on products of compact two-point homogeneous spaces. Integral Transforms and Special Functions, Abingdon, Taylor & Francis, v. 28, n. 1, p. 56-73, 2017. Disponível em: < http://dx.doi.org/10.1080/10652469.2016.1249867 > DOI: 10.1080/10652469.2016.1249867.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2017). Strict positive definiteness on products of compact two-point homogeneous spaces. Integral Transforms and Special Functions, 28( 1), 56-73. doi:10.1080/10652469.2016.1249867
    • NLM

      Barbosa VS, Menegatto VA. Strict positive definiteness on products of compact two-point homogeneous spaces [Internet]. Integral Transforms and Special Functions. 2017 ; 28( 1): 56-73.Available from: http://dx.doi.org/10.1080/10652469.2016.1249867
    • Vancouver

      Barbosa VS, Menegatto VA. Strict positive definiteness on products of compact two-point homogeneous spaces [Internet]. Integral Transforms and Special Functions. 2017 ; 28( 1): 56-73.Available from: http://dx.doi.org/10.1080/10652469.2016.1249867
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES ESPECIAIS, INTERPOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio; PERON, Ana Paula. Strictly positive definite kernels on a product of circles. Positivity, Basel, Springer/Birkhäuser, v. 21, n. 1, p. 329-342, 2017. Disponível em: < http://dx.doi.org/10.1007/s11117-016-0425-1 > DOI: 10.1007/s11117-016-0425-1.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2017). Strictly positive definite kernels on a product of circles. Positivity, 21( 1), 329-342. doi:10.1007/s11117-016-0425-1
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1
  • Source: Banach Journal of Mathematical Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio; PERON, Ana Paula. An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, Mashhad, Tusi Mathematical Research Group, v. 10, n. 4, p. 671-685, 2016. Disponível em: < http://dx.doi.org/10.1215/17358787-3649260 > DOI: 10.1215/17358787-3649260.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, 10( 4), 671-685. doi:10.1215/17358787-3649260
    • NLM

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.Available from: http://dx.doi.org/10.1215/17358787-3649260
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.Available from: http://dx.doi.org/10.1215/17358787-3649260
  • Source: Anais. Conference titles: Encontro Nacional de Análise Matemática e Aplicações - ENAMA. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ESPAÇOS HOMOGÊNEOS, ANÁLISE HARMÔNICA, FUNÇÕES ESPECIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONFIM, Rafaela N; MENEGATTO, Valdir Antônio. Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces. Anais.. Niterói: UFF, 2016.Disponível em: .
    • APA

      Bonfim, R. N., & Menegatto, V. A. (2016). Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces. In Anais. Niterói: UFF. Recuperado de http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
    • NLM

      Bonfim RN, Menegatto VA. Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces [Internet]. Anais. 2016 ;Available from: http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
    • Vancouver

      Bonfim RN, Menegatto VA. Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces [Internet]. Anais. 2016 ;Available from: http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
  • Source: Anais. Conference titles: Encontro Nacional de Análise Matemática e Aplicações - ENAMA. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio; PERON, Ana Paula. Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2). Anais.. Niterói: UFF, 2016.Disponível em: .
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2). In Anais. Niterói: UFF. Recuperado de http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2) [Internet]. Anais. 2016 ;Available from: http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2) [Internet]. Anais. 2016 ;Available from: http://www.enama.org/wp-content/uploads/2016/11/AnaisEnama2016v2.pdf
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís; MENEGATTO, Valdir Antônio. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere. Proceedings of the American Mathematical Society, Providence, AMS, v. 144, n. Ja 2016, p. 269-283, 2016. Disponível em: < http://dx.doi.org/10.1090/proc12716 > DOI: 10.1090/proc12716.
    • APA

      Jordão, T., & Menegatto, V. A. (2016). Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere. Proceedings of the American Mathematical Society, 144( Ja 2016), 269-283. doi:10.1090/proc12716
    • NLM

      Jordão T, Menegatto VA. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( Ja 2016): 269-283.Available from: http://dx.doi.org/10.1090/proc12716
    • Vancouver

      Jordão T, Menegatto VA. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( Ja 2016): 269-283.Available from: http://dx.doi.org/10.1090/proc12716

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021