Filtros : "Kashuba, Iryna" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, FORMAS QUADRÁTICAS, FORMAS BILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Victor Senoguchi; KASHUBA, Iryna; SERGEICHUK, Vladimir V.; SODRÉ, Eduardo Ventilari; ZAIDAN, André. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, New York, v. 611, p. 118-134, 2021. Disponível em: < https://doi.org/10.1016/j.laa.2020.12.005 > DOI: 10.1016/j.laa.2020.12.005.
    • APA

      Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005
    • NLM

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.Available from: https://doi.org/10.1016/j.laa.2020.12.005
    • Vancouver

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.Available from: https://doi.org/10.1016/j.laa.2020.12.005
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, COHOMOLOGIA, ÁLGEBRAS DE JORDAN, CATEGORIAS ABELIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; MATHIEU, Olivier. On the free Jordan algebras. Advances in Mathematics, New York, Elsevier, v. 383, p. 1-35, 2021. Disponível em: < https://doi.org/10.1016/j.aim.2021.107690 > DOI: 10.1016/j.aim.2021.107690.
    • APA

      Kashuba, I., & Mathieu, O. (2021). On the free Jordan algebras. Advances in Mathematics, 383, 1-35. doi:10.1016/j.aim.2021.107690
    • NLM

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.Available from: https://doi.org/10.1016/j.aim.2021.107690
    • Vancouver

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.Available from: https://doi.org/10.1016/j.aim.2021.107690
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; SERGANOVA, Vera. Representations of simple Jordan superalgebras. Advances in Mathematics, New York, v. 370, p. 1-47, 2020. Disponível em: < http://dx.doi.org/10.1016/j.aim.2020.107218 > DOI: 10.1016/j.aim.2020.107218.
    • APA

      Kashuba, I., & Serganova, V. (2020). Representations of simple Jordan superalgebras. Advances in Mathematics, 370, 1-47. doi:10.1016/j.aim.2020.107218
    • NLM

      Kashuba I, Serganova V. Representations of simple Jordan superalgebras [Internet]. Advances in Mathematics. 2020 ;370 1-47.Available from: http://dx.doi.org/10.1016/j.aim.2020.107218
    • Vancouver

      Kashuba I, Serganova V. Representations of simple Jordan superalgebras [Internet]. Advances in Mathematics. 2020 ;370 1-47.Available from: http://dx.doi.org/10.1016/j.aim.2020.107218
  • Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, Eduardo Monteiro; KASHUBA, Iryna; SAVAGE, Alistair. Affine wreath product algebras with trace maps of generic parity. 2020.Universidade de São Paulo, São Paulo, 2020. Disponível em: < https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07082020-121337/ >.
    • APA

      Mendonça, E. M., Kashuba, I., & Savage, A. (2020). Affine wreath product algebras with trace maps of generic parity. Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07082020-121337/
    • NLM

      Mendonça EM, Kashuba I, Savage A. Affine wreath product algebras with trace maps of generic parity [Internet]. 2020 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07082020-121337/
    • Vancouver

      Mendonça EM, Kashuba I, Savage A. Affine wreath product algebras with trace maps of generic parity [Internet]. 2020 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07082020-121337/
  • Unidade: IME

    Assunto: MATEMÁTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; ZELMANOV, Efim. São Paulo Journal of Mathematical Sciences. [S.l: s.n.], 2019.Disponível em: .
    • APA

      Kashuba, I., & Zelmanov, E. (2019). São Paulo Journal of Mathematical Sciences. Heidelberg. Recuperado de https://link.springer.com/journal/40863/volumes-and-issues/13-2
    • NLM

      Kashuba I, Zelmanov E. São Paulo Journal of Mathematical Sciences [Internet]. 2019 ; 13( 1):Available from: https://link.springer.com/journal/40863/volumes-and-issues/13-2
    • Vancouver

      Kashuba I, Zelmanov E. São Paulo Journal of Mathematical Sciences [Internet]. 2019 ; 13( 1):Available from: https://link.springer.com/journal/40863/volumes-and-issues/13-2
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, FAMÍLIAS (GEOMETRIA ALGÉBRICA), DIMENSÃO INFINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; MARTIN, María Eugenia. Geometric classification of nilpotent Jordan algebras of dimension five. Journal of Pure and Applied Algebra, Amsterdam, v. 222, n. 3, p. 546-559, 2018. Disponível em: < https://dx.doi.org/10.1016/j.jpaa.2017.04.018 > DOI: 10.1016/j.jpaa.2017.04.018.
    • APA

      Kashuba, I., & Martin, M. E. (2018). Geometric classification of nilpotent Jordan algebras of dimension five. Journal of Pure and Applied Algebra, 222( 3), 546-559. doi:10.1016/j.jpaa.2017.04.018
    • NLM

      Kashuba I, Martin ME. Geometric classification of nilpotent Jordan algebras of dimension five [Internet]. Journal of Pure and Applied Algebra. 2018 ; 222( 3): 546-559.Available from: https://dx.doi.org/10.1016/j.jpaa.2017.04.018
    • Vancouver

      Kashuba I, Martin ME. Geometric classification of nilpotent Jordan algebras of dimension five [Internet]. Journal of Pure and Applied Algebra. 2018 ; 222( 3): 546-559.Available from: https://dx.doi.org/10.1016/j.jpaa.2017.04.018
  • Source: Journal of Algebra. Unidade: IME

    Assunto: REPRESENTAÇÕES DE GRUPOS ALGÉBRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KASHUBA, Iryna. Structure of parabolically induced modules for affine Kac-Moody algebras. Journal of Algebra, Maryland Heights, v. 500, p. 362-374, 2018. Disponível em: < https://doi.org/10.1016/j.jalgebra.2017.03.007 > DOI: 10.1016/j.jalgebra.2017.03.007.
    • APA

      Futorny, V., & Kashuba, I. (2018). Structure of parabolically induced modules for affine Kac-Moody algebras. Journal of Algebra, 500, 362-374. doi:10.1016/j.jalgebra.2017.03.007
    • NLM

      Futorny V, Kashuba I. Structure of parabolically induced modules for affine Kac-Moody algebras [Internet]. Journal of Algebra. 2018 ; 500 362-374.Available from: https://doi.org/10.1016/j.jalgebra.2017.03.007
    • Vancouver

      Futorny V, Kashuba I. Structure of parabolically induced modules for affine Kac-Moody algebras [Internet]. Journal of Algebra. 2018 ; 500 362-374.Available from: https://doi.org/10.1016/j.jalgebra.2017.03.007
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; SERGANOVA, Vera. On the Tits–Kantor–Koecher construction of unital Jordan bimodules. Journal of Algebra, Maryland Heights, n. 481, p. 420-463-463, 2017. Disponível em: < https://dx.doi.org/10.1016/j.jalgebra.2017.03.002 > DOI: 10.1016/j.jalgebra.2017.03.002.
    • APA

      Kashuba, I., & Serganova, V. (2017). On the Tits–Kantor–Koecher construction of unital Jordan bimodules. Journal of Algebra, ( 481), 420-463-463. doi:10.1016/j.jalgebra.2017.03.002
    • NLM

      Kashuba I, Serganova V. On the Tits–Kantor–Koecher construction of unital Jordan bimodules [Internet]. Journal of Algebra. 2017 ;( 481): 420-463-463.Available from: https://dx.doi.org/10.1016/j.jalgebra.2017.03.002
    • Vancouver

      Kashuba I, Serganova V. On the Tits–Kantor–Koecher construction of unital Jordan bimodules [Internet]. Journal of Algebra. 2017 ;( 481): 420-463-463.Available from: https://dx.doi.org/10.1016/j.jalgebra.2017.03.002
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOŁUBOWSKI, Waldemar; KASHUBA, Iryna; ŻUREK, Sebastian. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, New York, v. 45, n. 11, p. 4679-4685, 2017. Disponível em: < https://dx.doi.org/10.1080/00927872.2016.1277388 > DOI: 10.1080/00927872.2016.1277388.
    • APA

      Hołubowski, W., Kashuba, I., & Żurek, S. (2017). Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, 45( 11), 4679-4685. doi:10.1080/00927872.2016.1277388
    • NLM

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.Available from: https://dx.doi.org/10.1080/00927872.2016.1277388
    • Vancouver

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.Available from: https://dx.doi.org/10.1080/00927872.2016.1277388
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; OVSIENKO, Serge; SHESTAKOV, Ivan P. On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics[S.l.], v. 23, n. 1, p. 47-61, 2017. Disponível em: < http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443 >.
    • APA

      Kashuba, I., Ovsienko, S., & Shestakov, I. P. (2017). On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, 23( 1), 47-61. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • NLM

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ;23( 1): 47-61.Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • Vancouver

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ;23( 1): 47-61.Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
  • Source: Abstracts. Conference titles: International Algebraic Conference in Ukraine. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna. Indecomposable modules over Kantor superalgebras. Anais.. Kyiv: Institute of Mathematics of NAS of Ukraine, 2017.Disponível em: .
    • APA

      Kashuba, I. (2017). Indecomposable modules over Kantor superalgebras. In Abstracts. Kyiv: Institute of Mathematics of NAS of Ukraine. Recuperado de https://www.imath.kiev.ua/~algebra/iacu2017/abstracts
    • NLM

      Kashuba I. Indecomposable modules over Kantor superalgebras [Internet]. Abstracts. 2017 ;Available from: https://www.imath.kiev.ua/~algebra/iacu2017/abstracts
    • Vancouver

      Kashuba I. Indecomposable modules over Kantor superalgebras [Internet]. Abstracts. 2017 ;Available from: https://www.imath.kiev.ua/~algebra/iacu2017/abstracts
  • Source: Quaestiones Mathematicae. Unidade: IME

    Subjects: ENUMERAÇÃO E IDENTIDADE COMBINATÓRIAS, GRUPOS FINITOS ABSTRATOS, TEORIA DOS NÚMEROS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; ZELENYUK, Yuliya. The number of symmetric colorings of the dihedral group D3. Quaestiones Mathematicae, Grahamstown, v. 39, n. 1, p. 65-71, 2016. Disponível em: < http://dx.doi.org/10.2989/16073606.2015.1015646 > DOI: 10.2989/16073606.2015.1015646.
    • APA

      Kashuba, I., & Zelenyuk, Y. (2016). The number of symmetric colorings of the dihedral group D3. Quaestiones Mathematicae, 39( 1), 65-71. doi:10.2989/16073606.2015.1015646
    • NLM

      Kashuba I, Zelenyuk Y. The number of symmetric colorings of the dihedral group D3 [Internet]. Quaestiones Mathematicae. 2016 ; 39( 1): 65-71.Available from: http://dx.doi.org/10.2989/16073606.2015.1015646
    • Vancouver

      Kashuba I, Zelenyuk Y. The number of symmetric colorings of the dihedral group D3 [Internet]. Quaestiones Mathematicae. 2016 ; 39( 1): 65-71.Available from: http://dx.doi.org/10.2989/16073606.2015.1015646
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; MARTIN, Maria Eugenia. The variety of three-dimensional real Jordan algebras. Journal of Algebra and Its Applications, Singapore, 2015. Disponível em: < http://dx.doi.org/10.1142/S0219498816501589 > DOI: 10.1142/S0219498816501589.
    • APA

      Kashuba, I., & Martin, M. E. (2015). The variety of three-dimensional real Jordan algebras. Journal of Algebra and Its Applications. doi:10.1142/S0219498816501589
    • NLM

      Kashuba I, Martin ME. The variety of three-dimensional real Jordan algebras [Internet]. Journal of Algebra and Its Applications. 2015 ;Available from: http://dx.doi.org/10.1142/S0219498816501589
    • Vancouver

      Kashuba I, Martin ME. The variety of three-dimensional real Jordan algebras [Internet]. Journal of Algebra and Its Applications. 2015 ;Available from: http://dx.doi.org/10.1142/S0219498816501589
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, FAMÍLIAS (GEOMETRIA ALGÉBRICA), ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; MARTIN, Maria Eugenia. Deformations of Jordan algebras of dimension four. Journal of Algebra, San Diego, v. 399, p. 277\2013289, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2013.09.040 > DOI: 10.1016/j.jalgebra.2013.09.040.
    • APA

      Kashuba, I., & Martin, M. E. (2014). Deformations of Jordan algebras of dimension four. Journal of Algebra, 399, 277\2013289. doi:10.1016/j.jalgebra.2013.09.040
    • NLM

      Kashuba I, Martin ME. Deformations of Jordan algebras of dimension four [Internet]. Journal of Algebra. 2014 ; 399 277\2013289.Available from: http://dx.doi.org/10.1016/j.jalgebra.2013.09.040
    • Vancouver

      Kashuba I, Martin ME. Deformations of Jordan algebras of dimension four [Internet]. Journal of Algebra. 2014 ; 399 277\2013289.Available from: http://dx.doi.org/10.1016/j.jalgebra.2013.09.040
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; MARTINS, Renato Alessandro. Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, Philadelphia, v. 42, n. 6, p. 2428-2441, 2014. Disponível em: < http://dx.doi.org/10.1080/00927872.2012.758270 > DOI: 10.1080/00927872.2012.758270.
    • APA

      Kashuba, I., & Martins, R. A. (2014). Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, 42( 6), 2428-2441. doi:10.1080/00927872.2012.758270
    • NLM

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.Available from: http://dx.doi.org/10.1080/00927872.2012.758270
    • Vancouver

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.Available from: http://dx.doi.org/10.1080/00927872.2012.758270
  • Source: Developments and retrospectives in Lie theory: algebraic methods. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KASHUBA, Iryna. Generalized loop modules for affine Kac–Moody algebras. In: Developments and retrospectives in Lie theory: algebraic methods[S.l: s.n.], 2014.Disponível em: .
    • APA

      Futorny, V., & Kashuba, I. (2014). Generalized loop modules for affine Kac–Moody algebras. In Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer. Recuperado de http://dx.doi.org/10.1007/978-3-319-09804-3_8
    • NLM

      Futorny V, Kashuba I. Generalized loop modules for affine Kac–Moody algebras [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. Available from: http://dx.doi.org/10.1007/978-3-319-09804-3_8
    • Vancouver

      Futorny V, Kashuba I. Generalized loop modules for affine Kac–Moody algebras [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. Available from: http://dx.doi.org/10.1007/978-3-319-09804-3_8
  • Source: Journal of Algebra. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEKKERT, Viktor; BENKART, Georgia; FUTORNY, Vyacheslav; KASHUBA, Iryna. New irreducible modules for Heisenberg and affine Lie algebras. Journal of Algebra, Amsterdam, v. 373, n. 2, p. 284-298, 2013. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2012.09.035 > DOI: 10.1016/j.jalgebra.2012.09.035.
    • APA

      Bekkert, V., Benkart, G., Futorny, V., & Kashuba, I. (2013). New irreducible modules for Heisenberg and affine Lie algebras. Journal of Algebra, 373( 2), 284-298. doi:10.1016/j.jalgebra.2012.09.035
    • NLM

      Bekkert V, Benkart G, Futorny V, Kashuba I. New irreducible modules for Heisenberg and affine Lie algebras [Internet]. Journal of Algebra. 2013 ; 373( 2): 284-298.Available from: http://dx.doi.org/10.1016/j.jalgebra.2012.09.035
    • Vancouver

      Bekkert V, Benkart G, Futorny V, Kashuba I. New irreducible modules for Heisenberg and affine Lie algebras [Internet]. Journal of Algebra. 2013 ; 373( 2): 284-298.Available from: http://dx.doi.org/10.1016/j.jalgebra.2012.09.035
  • Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTIN, Maria Eugenia; KASHUBA, Iryna. Deformações e isotopias de álgebras de Jordan. 2013.Universidade de São Paulo, São Paulo, 2013. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10102013-183947 >.
    • APA

      Martin, M. E., & Kashuba, I. (2013). Deformações e isotopias de álgebras de Jordan. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10102013-183947
    • NLM

      Martin ME, Kashuba I. Deformações e isotopias de álgebras de Jordan [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10102013-183947
    • Vancouver

      Martin ME, Kashuba I. Deformações e isotopias de álgebras de Jordan [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-10102013-183947
  • Source: Advances in Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna; OVSIENKO, Serge; SHESTAKOV, Ivan P. Representation type of Jordan algebras. Advances in Mathematics, San Diego, v. 226, n. 1, p. 385-416, 2011. Disponível em: < https://doi.org/10.1016/j.aim.2010.07.003 > DOI: 10.1016/j.aim.2010.07.003.
    • APA

      Kashuba, I., Ovsienko, S., & Shestakov, I. P. (2011). Representation type of Jordan algebras. Advances in Mathematics, 226( 1), 385-416. doi:10.1016/j.aim.2010.07.003
    • NLM

      Kashuba I, Ovsienko S, Shestakov IP. Representation type of Jordan algebras [Internet]. Advances in Mathematics. 2011 ; 226( 1): 385-416.Available from: https://doi.org/10.1016/j.aim.2010.07.003
    • Vancouver

      Kashuba I, Ovsienko S, Shestakov IP. Representation type of Jordan algebras [Internet]. Advances in Mathematics. 2011 ; 226( 1): 385-416.Available from: https://doi.org/10.1016/j.aim.2010.07.003
  • Source: Symmetry Integrability and Geometry-Methods and Applications. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KASHUBA, Iryna. Induced modules for affine Lie algebras. Symmetry Integrability and Geometry-Methods and Applications, Tereschchenkiv, v. 5, 2009. Disponível em: < https://doi.org/10.3842/SIGMA.2009.026 > DOI: 10.3842/SIGMA.2009.026.
    • APA

      Futorny, V., & Kashuba, I. (2009). Induced modules for affine Lie algebras. Symmetry Integrability and Geometry-Methods and Applications, 5. doi:10.3842/SIGMA.2009.026
    • NLM

      Futorny V, Kashuba I. Induced modules for affine Lie algebras [Internet]. Symmetry Integrability and Geometry-Methods and Applications. 2009 ; 5Available from: https://doi.org/10.3842/SIGMA.2009.026
    • Vancouver

      Futorny V, Kashuba I. Induced modules for affine Lie algebras [Internet]. Symmetry Integrability and Geometry-Methods and Applications. 2009 ; 5Available from: https://doi.org/10.3842/SIGMA.2009.026

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021