Filters : "Jespers, Eric" Limpar

Filters



Refine with date range


  • Source: Bulletin of the Belgian Mathematical Society - Simon Stevin. Unidades: EACH, IME

    Subject: TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; KIEFER, Ann; SILVA, Antonio de Andrade e; SOUZA FILHO, Antônio Calixto de. Dirichlet-Ford domains and Double Dirichlet domains. Bulletin of the Belgian Mathematical Society - Simon Stevin, Brussels, v. 23, n. ju 2016, p. 465-479, 2016. Disponível em: < https://doi.org/10.36045/bbms/1473186517 > DOI: 10.36045/bbms/1473186517.
    • APA

      Jespers, E., Juriaans, O. S., Kiefer, A., Silva, A. de A. e, & Souza Filho, A. C. de. (2016). Dirichlet-Ford domains and Double Dirichlet domains. Bulletin of the Belgian Mathematical Society - Simon Stevin, 23( ju 2016), 465-479. doi:10.36045/bbms/1473186517
    • NLM

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. Dirichlet-Ford domains and Double Dirichlet domains [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016 ; 23( ju 2016): 465-479.Available from: https://doi.org/10.36045/bbms/1473186517
    • Vancouver

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. Dirichlet-Ford domains and Double Dirichlet domains [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016 ; 23( ju 2016): 465-479.Available from: https://doi.org/10.36045/bbms/1473186517
  • Source: Mathematics of Computation. Unidades: IME, EACH

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; KIEFER, Ann; SILVA, A. de A. e; SOUZA FILHO, Antônio Calixto de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, Providence, v. 84, n. 293, p. 1489-1520, 2015. Disponível em: < http://dx.doi.org/10.1090/S0025-5718-2014-02865-2 > DOI: 10.1090/S0025-5718-2014-02865-2.
    • APA

      Jespers, E., Juriaans, O. S., Kiefer, A., Silva, A. de A. e, & Souza Filho, A. C. de. (2015). From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, 84( 293), 1489-1520. doi:10.1090/S0025-5718-2014-02865-2
    • NLM

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.Available from: http://dx.doi.org/10.1090/S0025-5718-2014-02865-2
    • Vancouver

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.Available from: http://dx.doi.org/10.1090/S0025-5718-2014-02865-2
  • Source: Glasgow Mathematical Journal. Unidade: IME

    Subject: TEORIA DOS GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASTOS, G; JESPERS, Eric; JURIAANS, Orlando Stanley; SILVA, A. de A. e. Extension of automorphisms of subgroups. Glasgow Mathematical Journal, Edinburgh, v. 54, n. 2, p. 371-380, 2012. Disponível em: < http://dx.doi.org/10.1017/S0017089512000031 > DOI: 10.1017/S0017089512000031.
    • APA

      Bastos, G., Jespers, E., Juriaans, O. S., & Silva, A. de A. e. (2012). Extension of automorphisms of subgroups. Glasgow Mathematical Journal, 54( 2), 371-380. doi:10.1017/S0017089512000031
    • NLM

      Bastos G, Jespers E, Juriaans OS, Silva A de A e. Extension of automorphisms of subgroups [Internet]. Glasgow Mathematical Journal. 2012 ; 54( 2): 371-380.Available from: http://dx.doi.org/10.1017/S0017089512000031
    • Vancouver

      Bastos G, Jespers E, Juriaans OS, Silva A de A e. Extension of automorphisms of subgroups [Internet]. Glasgow Mathematical Journal. 2012 ; 54( 2): 371-380.Available from: http://dx.doi.org/10.1017/S0017089512000031
  • Source: Journal of Algebra and its Applications. Unidade: IME

    Subject: ANÉIS DE GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISTO, Osnel Broche; JESPERS, Eric; POLCINO MILIES, Francisco César; RUIZ MARIN, manuel. Antisymmetric elements in group rings II. Journal of Algebra and its Applications, Singapore, v. 8, n. 1, p. 115-127, 2009. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254 > DOI: 10.1142/S0219498809003254.
    • APA

      Cristo, O. B., Jespers, E., Polcino Milies, F. C., & Ruiz Marin, manuel. (2009). Antisymmetric elements in group rings II. Journal of Algebra and its Applications, 8( 1), 115-127. doi:10.1142/S0219498809003254
    • NLM

      Cristo OB, Jespers E, Polcino Milies FC, Ruiz Marin manuel. Antisymmetric elements in group rings II [Internet]. Journal of Algebra and its Applications. 2009 ; 8( 1): 115-127.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254
    • Vancouver

      Cristo OB, Jespers E, Polcino Milies FC, Ruiz Marin manuel. Antisymmetric elements in group rings II [Internet]. Journal of Algebra and its Applications. 2009 ; 8( 1): 115-127.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254
  • Source: Journal of Group Theory. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTWECK, Martin; IWAKI, Edson; JESPERS, Eric; JURIAANS, Orlando Stanley. On hypercentral units in integral group rings. Journal of Group Theory, Berlin, v. 10, n. 4, p. 477-504, 2007. Disponível em: < https://doi.org/10.1515/JGT.2007.040 > DOI: 10.1515/JGT.2007.040.
    • APA

      Hertweck, M., Iwaki, E., Jespers, E., & Juriaans, O. S. (2007). On hypercentral units in integral group rings. Journal of Group Theory, 10( 4), 477-504. doi:10.1515/JGT.2007.040
    • NLM

      Hertweck M, Iwaki E, Jespers E, Juriaans OS. On hypercentral units in integral group rings [Internet]. Journal of Group Theory. 2007 ; 10( 4): 477-504.Available from: https://doi.org/10.1515/JGT.2007.040
    • Vancouver

      Hertweck M, Iwaki E, Jespers E, Juriaans OS. On hypercentral units in integral group rings [Internet]. Journal of Group Theory. 2007 ; 10( 4): 477-504.Available from: https://doi.org/10.1515/JGT.2007.040
  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOOMS, Ann; JESPERS, Eric; JURIAANS, Orlando Stanley. On group identities for the unit group of algebras and semigroup algebras over an infinite field. Journal of Algebra, San Diego, v. 284, n. 1, p. 273-283, 2005. Disponível em: < https://doi.org/10.1016/j.jalgebra.2004.07.033 > DOI: 10.1016/j.jalgebra.2004.07.033.
    • APA

      Dooms, A., Jespers, E., & Juriaans, O. S. (2005). On group identities for the unit group of algebras and semigroup algebras over an infinite field. Journal of Algebra, 284( 1), 273-283. doi:10.1016/j.jalgebra.2004.07.033
    • NLM

      Dooms A, Jespers E, Juriaans OS. On group identities for the unit group of algebras and semigroup algebras over an infinite field [Internet]. Journal of Algebra. 2005 ; 284( 1): 273-283.Available from: https://doi.org/10.1016/j.jalgebra.2004.07.033
    • Vancouver

      Dooms A, Jespers E, Juriaans OS. On group identities for the unit group of algebras and semigroup algebras over an infinite field [Internet]. Journal of Algebra. 2005 ; 284( 1): 273-283.Available from: https://doi.org/10.1016/j.jalgebra.2004.07.033
  • Unidade: IME

    Subject: ANÉIS DE GRUPOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IWAKI, Edson Ryoji Okamoto; JESPERS, Eric; JURIAANS, Orlando Stanley. The hypercentre of the unit group of an integral group ring. [S.l: s.n.], 2005.
    • APA

      Iwaki, E. R. O., Jespers, E., & Juriaans, O. S. (2005). The hypercentre of the unit group of an integral group ring. São Paulo: IME-USP.
    • NLM

      Iwaki ERO, Jespers E, Juriaans OS. The hypercentre of the unit group of an integral group ring. 2005 ;
    • Vancouver

      Iwaki ERO, Jespers E, Juriaans OS. The hypercentre of the unit group of an integral group ring. 2005 ;
  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOOMS, Ann; JESPERS, Eric; JURIAANS, Orlando Stanley. Units in orders and integral semigroup rings. Journal of Algebra, Maryland Heights, v. 265, n. 2, p. 675-689, 2003. Disponível em: < https://doi.org/10.1016/s0021-8693(03)00283-7 > DOI: 10.1016/s0021-8693(03)00283-7.
    • APA

      Dooms, A., Jespers, E., & Juriaans, O. S. (2003). Units in orders and integral semigroup rings. Journal of Algebra, 265( 2), 675-689. doi:10.1016/s0021-8693(03)00283-7
    • NLM

      Dooms A, Jespers E, Juriaans OS. Units in orders and integral semigroup rings [Internet]. Journal of Algebra. 2003 ; 265( 2): 675-689.Available from: https://doi.org/10.1016/s0021-8693(03)00283-7
    • Vancouver

      Dooms A, Jespers E, Juriaans OS. Units in orders and integral semigroup rings [Internet]. Journal of Algebra. 2003 ; 265( 2): 675-689.Available from: https://doi.org/10.1016/s0021-8693(03)00283-7
  • Source: Journal of Group theory. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. The finite conjugacy centre of the unit group of integral group rings. Journal of Group theory, Berlin, v. 6, n. 1, p. 93-102, 2003. Disponível em: < https://doi.org/10.1515/jgth.2003.008 > DOI: 10.1515/jgth.2003.008.
    • APA

      Jespers, E., & Juriaans, O. S. (2003). The finite conjugacy centre of the unit group of integral group rings. Journal of Group theory, 6( 1), 93-102. doi:10.1515/jgth.2003.008
    • NLM

      Jespers E, Juriaans OS. The finite conjugacy centre of the unit group of integral group rings [Internet]. Journal of Group theory. 2003 ; 6( 1): 93-102.Available from: https://doi.org/10.1515/jgth.2003.008
    • Vancouver

      Jespers E, Juriaans OS. The finite conjugacy centre of the unit group of integral group rings [Internet]. Journal of Group theory. 2003 ; 6( 1): 93-102.Available from: https://doi.org/10.1515/jgth.2003.008
  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS DE GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; DE MIRANDA, João Montenegro; ROGÉRIO, José Robério. On the normalizer problem. Journal of Algebra, Maryland Heights, v. 247, n. 1, p. 24-36, 2002. Disponível em: < https://doi.org/10.1006/jabr.2001.8724 > DOI: 10.1006/jabr.2001.8724.
    • APA

      Jespers, E., Juriaans, O. S., De Miranda, J. M., & Rogério, J. R. (2002). On the normalizer problem. Journal of Algebra, 247( 1), 24-36. doi:10.1006/jabr.2001.8724
    • NLM

      Jespers E, Juriaans OS, De Miranda JM, Rogério JR. On the normalizer problem [Internet]. Journal of Algebra. 2002 ; 247( 1): 24-36.Available from: https://doi.org/10.1006/jabr.2001.8724
    • Vancouver

      Jespers E, Juriaans OS, De Miranda JM, Rogério JR. On the normalizer problem [Internet]. Journal of Algebra. 2002 ; 247( 1): 24-36.Available from: https://doi.org/10.1006/jabr.2001.8724
  • Source: Matemática Contemporânea. Conference title: School of Algebra, Part II. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, GRUPOS FINITOS

    PrivateOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; MIRANDA, J. M. de; ROGÉRIO, J. R. A note on the normalizer problem. Matemática Contemporânea[S.l: s.n.], 2001.Disponível em: .
    • APA

      Jespers, E., Juriaans, O. S., Miranda, J. M. de, & Rogério, J. R. (2001). A note on the normalizer problem. Matemática Contemporânea. Rio de Janeiro. Recuperado de https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2021/12/21-7.pdf
    • NLM

      Jespers E, Juriaans OS, Miranda JM de, Rogério JR. A note on the normalizer problem [Internet]. Matemática Contemporânea. 2001 ; 21 117-130.Available from: https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2021/12/21-7.pdf
    • Vancouver

      Jespers E, Juriaans OS, Miranda JM de, Rogério JR. A note on the normalizer problem [Internet]. Matemática Contemporânea. 2001 ; 21 117-130.Available from: https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2021/12/21-7.pdf
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. Isomorphisms of integral group rings of infinite groups. Journal of Algebra, Maryland Heights, v. 223, n. 1, p. 171-189, 2000. Disponível em: < https://doi.org/10.1006/jabr.1999.7989 > DOI: 10.1006/jabr.1999.7989.
    • APA

      Jespers, E., & Juriaans, O. S. (2000). Isomorphisms of integral group rings of infinite groups. Journal of Algebra, 223( 1), 171-189. doi:10.1006/jabr.1999.7989
    • NLM

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups [Internet]. Journal of Algebra. 2000 ; 223( 1): 171-189.Available from: https://doi.org/10.1006/jabr.1999.7989
    • Vancouver

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups [Internet]. Journal of Algebra. 2000 ; 223( 1): 171-189.Available from: https://doi.org/10.1006/jabr.1999.7989
  • Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. Isomorphisms of integral group rings of infinite groups. [S.l: s.n.], 1998.
    • APA

      Jespers, E., & Juriaans, O. S. (1998). Isomorphisms of integral group rings of infinite groups. São Paulo: IME-USP.
    • NLM

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups. 1998 ;
    • Vancouver

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups. 1998 ;
  • Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOODAIRE, Edgar G; JESPERS, Eric; POLCINO MILIES, Francisco César. Alternative loop rings. [S.l: s.n.], 1996.
    • APA

      Goodaire, E. G., Jespers, E., & Polcino Milies, F. C. (1996). Alternative loop rings. Amsterdam: Elsevier.
    • NLM

      Goodaire EG, Jespers E, Polcino Milies FC. Alternative loop rings. 1996 ;
    • Vancouver

      Goodaire EG, Jespers E, Polcino Milies FC. Alternative loop rings. 1996 ;
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COELHO, Sonia P; JESPERS, Eric; POLCINO MILIES, Francisco César. Automorphisms of group algebras of some metacyelic groups*. Communications in Algebra, New York, v. 24, n. 13, p. 4135-4145, 1996. Disponível em: < https://doi.org/10.1080/00927879608825803 > DOI: 10.1080/00927879608825803.
    • APA

      Coelho, S. P., Jespers, E., & Polcino Milies, F. C. (1996). Automorphisms of group algebras of some metacyelic groups*. Communications in Algebra, 24( 13), 4135-4145. doi:10.1080/00927879608825803
    • NLM

      Coelho SP, Jespers E, Polcino Milies FC. Automorphisms of group algebras of some metacyelic groups* [Internet]. Communications in Algebra. 1996 ; 24( 13): 4135-4145.Available from: https://doi.org/10.1080/00927879608825803
    • Vancouver

      Coelho SP, Jespers E, Polcino Milies FC. Automorphisms of group algebras of some metacyelic groups* [Internet]. Communications in Algebra. 1996 ; 24( 13): 4135-4145.Available from: https://doi.org/10.1080/00927879608825803
  • Source: Journal of Pure and Applied Algebra. Conference title: International Conference Contact Franco Belge en Algebre. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; POLCINO MILIES, Francisco César. Units of group rings. Journal of Pure and Applied Algebra[S.l: s.n.], 1996.Disponível em: DOI: 10.1016/0022-4049(95)00066-6.
    • APA

      Jespers, E., & Polcino Milies, F. C. (1996). Units of group rings. Journal of Pure and Applied Algebra. Amsterdam. doi:10.1016/0022-4049(95)00066-6
    • NLM

      Jespers E, Polcino Milies FC. Units of group rings [Internet]. Journal of Pure and Applied Algebra. 1996 ; 107( 2-3): 233-251.Available from: https://doi.org/10.1016/0022-4049(95)00066-6
    • Vancouver

      Jespers E, Polcino Milies FC. Units of group rings [Internet]. Journal of Pure and Applied Algebra. 1996 ; 107( 2-3): 233-251.Available from: https://doi.org/10.1016/0022-4049(95)00066-6
  • Source: Journal of Algebra. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; LEAL, Guilherme; POLCINO MILIES, Francisco César. Classifying indecomposable R.A. loops. Journal of Algebra, Maryland Heights, v. 176, n. 2, p. 569-584, 1995. Disponível em: < https://doi.org/10.1006/jabr.1995.1260 > DOI: 10.1006/jabr.1995.1260.
    • APA

      Jespers, E., Leal, G., & Polcino Milies, F. C. (1995). Classifying indecomposable R.A. loops. Journal of Algebra, 176( 2), 569-584. doi:10.1006/jabr.1995.1260
    • NLM

      Jespers E, Leal G, Polcino Milies FC. Classifying indecomposable R.A. loops [Internet]. Journal of Algebra. 1995 ; 176( 2): 569-584.Available from: https://doi.org/10.1006/jabr.1995.1260
    • Vancouver

      Jespers E, Leal G, Polcino Milies FC. Classifying indecomposable R.A. loops [Internet]. Journal of Algebra. 1995 ; 176( 2): 569-584.Available from: https://doi.org/10.1006/jabr.1995.1260
  • Source: Canadian Mathematical Bulletin. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; LEAL, Guilherme; POLCINO MILIES, Francisco César. Units integral group rings of some metacyclic groups. Canadian Mathematical Bulletin, Ottawa, v. 37, n. ju 1994, p. 228-237, 1994. Disponível em: < https://doi.org/10.4153/CMB-1994-034-0 > DOI: 10.4153/cmb-1994-034-0.
    • APA

      Jespers, E., Leal, G., & Polcino Milies, F. C. (1994). Units integral group rings of some metacyclic groups. Canadian Mathematical Bulletin, 37( ju 1994), 228-237. doi:10.4153/cmb-1994-034-0
    • NLM

      Jespers E, Leal G, Polcino Milies FC. Units integral group rings of some metacyclic groups [Internet]. Canadian Mathematical Bulletin. 1994 ; 37( ju 1994): 228-237.Available from: https://doi.org/10.4153/CMB-1994-034-0
    • Vancouver

      Jespers E, Leal G, Polcino Milies FC. Units integral group rings of some metacyclic groups [Internet]. Canadian Mathematical Bulletin. 1994 ; 37( ju 1994): 228-237.Available from: https://doi.org/10.4153/CMB-1994-034-0
  • Source: Communications in Algebra. Unidade: IME

    Subject: TEORIA DOS GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; LEAL, Guilherme; POLCINO MILIES, Francisco César. Loop algebras of indecomposable R. A. Loops. Communications in Algebra, New York, v. 22, n. 4 , p. 1363-1379, 1994. Disponível em: < https://doi.org/10.1080/00927879408824910 > DOI: 10.1080/00927879408824910.
    • APA

      Jespers, E., Leal, G., & Polcino Milies, F. C. (1994). Loop algebras of indecomposable R. A. Loops. Communications in Algebra, 22( 4 ), 1363-1379. doi:10.1080/00927879408824910
    • NLM

      Jespers E, Leal G, Polcino Milies FC. Loop algebras of indecomposable R. A. Loops [Internet]. Communications in Algebra. 1994 ; 22( 4 ): 1363-1379.Available from: https://doi.org/10.1080/00927879408824910
    • Vancouver

      Jespers E, Leal G, Polcino Milies FC. Loop algebras of indecomposable R. A. Loops [Internet]. Communications in Algebra. 1994 ; 22( 4 ): 1363-1379.Available from: https://doi.org/10.1080/00927879408824910

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022