Filtros : "Jespers, Eric" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the Belgian Mathematical Society - Simon Stevin. Unidades: EACH, IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; KIEFER, Ann; SILVA, Antonio de Andrade e; SOUZA FILHO, Antônio Calixto de. Dirichlet-Ford domains and Double Dirichlet domains. Bulletin of the Belgian Mathematical Society - Simon Stevin, Brussels, v. 23, n. ju 2016, p. 465-479, 2016. Disponível em: < https://arxiv.org/abs/1411.6813 >.
    • APA

      Jespers, E., Juriaans, O. S., Kiefer, A., Silva, A. de A. e, & Souza Filho, A. C. de. (2016). Dirichlet-Ford domains and Double Dirichlet domains. Bulletin of the Belgian Mathematical Society - Simon Stevin, 23( ju 2016), 465-479. Recuperado de https://arxiv.org/abs/1411.6813
    • NLM

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. Dirichlet-Ford domains and Double Dirichlet domains [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016 ; 23( ju 2016): 465-479.Available from: https://arxiv.org/abs/1411.6813
    • Vancouver

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. Dirichlet-Ford domains and Double Dirichlet domains [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016 ; 23( ju 2016): 465-479.Available from: https://arxiv.org/abs/1411.6813
  • Source: Mathematics of Computation. Unidades: IME, EACH

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; KIEFER, Ann; SILVA, A. de A. e; SOUZA FILHO, Antônio Calixto de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, Providence, v. 84, n. 293, p. 1489-1520, 2015. Disponível em: < http://dx.doi.org/10.1090/S0025-5718-2014-02865-2 > DOI: 10.1090/S0025-5718-2014-02865-2.
    • APA

      Jespers, E., Juriaans, O. S., Kiefer, A., Silva, A. de A. e, & Souza Filho, A. C. de. (2015). From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, 84( 293), 1489-1520. doi:10.1090/S0025-5718-2014-02865-2
    • NLM

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.Available from: http://dx.doi.org/10.1090/S0025-5718-2014-02865-2
    • Vancouver

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.Available from: http://dx.doi.org/10.1090/S0025-5718-2014-02865-2
  • Source: Glasgow Mathematical Journal. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASTOS, G; JESPERS, Eric; JURIAANS, Orlando Stanley; SILVA, A. de A. e. Extension of automorphisms of subgroups. Glasgow Mathematical Journal, Edinburgh, v. 54, n. 2, p. 371-380, 2012. Disponível em: < http://dx.doi.org/10.1017/S0017089512000031 > DOI: 10.1017/S0017089512000031.
    • APA

      Bastos, G., Jespers, E., Juriaans, O. S., & Silva, A. de A. e. (2012). Extension of automorphisms of subgroups. Glasgow Mathematical Journal, 54( 2), 371-380. doi:10.1017/S0017089512000031
    • NLM

      Bastos G, Jespers E, Juriaans OS, Silva A de A e. Extension of automorphisms of subgroups [Internet]. Glasgow Mathematical Journal. 2012 ; 54( 2): 371-380.Available from: http://dx.doi.org/10.1017/S0017089512000031
    • Vancouver

      Bastos G, Jespers E, Juriaans OS, Silva A de A e. Extension of automorphisms of subgroups [Internet]. Glasgow Mathematical Journal. 2012 ; 54( 2): 371-380.Available from: http://dx.doi.org/10.1017/S0017089512000031
  • Source: Journal of Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISTO, Osnel Broche; JESPERS, Eric; POLCINO MILIES, Francisco César; RUIZ MARIN, manuel. Antisymmetric elements in group rings II. Journal of Algebra and its Applications, Singapore, World Scientific, v. 8, n. 1, p. 115-127, 2009. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254 > DOI: 10.1142/S0219498809003254.
    • APA

      Cristo, O. B., Jespers, E., Polcino Milies, F. C., & Ruiz Marin, manuel. (2009). Antisymmetric elements in group rings II. Journal of Algebra and its Applications, 8( 1), 115-127. doi:10.1142/S0219498809003254
    • NLM

      Cristo OB, Jespers E, Polcino Milies FC, Ruiz Marin manuel. Antisymmetric elements in group rings II [Internet]. Journal of Algebra and its Applications. 2009 ; 8( 1): 115-127.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254
    • Vancouver

      Cristo OB, Jespers E, Polcino Milies FC, Ruiz Marin manuel. Antisymmetric elements in group rings II [Internet]. Journal of Algebra and its Applications. 2009 ; 8( 1): 115-127.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219498809003254
  • Source: Journal of Algebra, San Diego. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOOMS, Ann; JURIAANS, Orlando Stanley; JESPERS, Eric. On group identities for the unit group of algebras and semigroup algebras over an infinite field. Journal of Algebra, San Diego, San Diego, v. 284, n. 1, p. 273-283, 2005. Disponível em: < https://doi.org/10.1016/j.jalgebra.2004.07.033 > DOI: 10.1016/j.jalgebra.2004.07.033.
    • APA

      Dooms, A., Juriaans, O. S., & Jespers, E. (2005). On group identities for the unit group of algebras and semigroup algebras over an infinite field. Journal of Algebra, San Diego, 284( 1), 273-283. doi:10.1016/j.jalgebra.2004.07.033
    • NLM

      Dooms A, Juriaans OS, Jespers E. On group identities for the unit group of algebras and semigroup algebras over an infinite field [Internet]. Journal of Algebra, San Diego. 2005 ; 284( 1): 273-283.Available from: https://doi.org/10.1016/j.jalgebra.2004.07.033
    • Vancouver

      Dooms A, Juriaans OS, Jespers E. On group identities for the unit group of algebras and semigroup algebras over an infinite field [Internet]. Journal of Algebra, San Diego. 2005 ; 284( 1): 273-283.Available from: https://doi.org/10.1016/j.jalgebra.2004.07.033
  • Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IWAKI, Edson Ryoji Okamoto; JESPERS, Eric; JURIAANS, Orlando Stanley. The hypercentre of the unit group of an integral group ring. [S.l: s.n.], 2005.
    • APA

      Iwaki, E. R. O., Jespers, E., & Juriaans, O. S. (2005). The hypercentre of the unit group of an integral group ring. São Paulo: IME-USP.
    • NLM

      Iwaki ERO, Jespers E, Juriaans OS. The hypercentre of the unit group of an integral group ring. 2005 ;
    • Vancouver

      Iwaki ERO, Jespers E, Juriaans OS. The hypercentre of the unit group of an integral group ring. 2005 ;
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOOMS, Ann; JESPERS, Eric; JURIAANS, Orlando Stanley. Units in orders and integral semigroup rings. Journal of Algebra[S.l.], v. 265, n. 2, p. 675-689, 2003. Disponível em: < https://doi.org/10.1016/s0021-8693(03)00283-7 > DOI: 10.1016/s0021-8693(03)00283-7.
    • APA

      Dooms, A., Jespers, E., & Juriaans, O. S. (2003). Units in orders and integral semigroup rings. Journal of Algebra, 265( 2), 675-689. doi:10.1016/s0021-8693(03)00283-7
    • NLM

      Dooms A, Jespers E, Juriaans OS. Units in orders and integral semigroup rings [Internet]. Journal of Algebra. 2003 ; 265( 2): 675-689.Available from: https://doi.org/10.1016/s0021-8693(03)00283-7
    • Vancouver

      Dooms A, Jespers E, Juriaans OS. Units in orders and integral semigroup rings [Internet]. Journal of Algebra. 2003 ; 265( 2): 675-689.Available from: https://doi.org/10.1016/s0021-8693(03)00283-7
  • Source: Journal of Group theory. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. The finite conjugacy centre of the unit group of integral group rings. Journal of Group theory[S.l.], v. 6, n. 1, p. 93-102, 2003. Disponível em: < https://doi.org/10.1515/jgth.2003.008 > DOI: 10.1515/jgth.2003.008.
    • APA

      Jespers, E., & Juriaans, O. S. (2003). The finite conjugacy centre of the unit group of integral group rings. Journal of Group theory, 6( 1), 93-102. doi:10.1515/jgth.2003.008
    • NLM

      Jespers E, Juriaans OS. The finite conjugacy centre of the unit group of integral group rings [Internet]. Journal of Group theory. 2003 ; 6( 1): 93-102.Available from: https://doi.org/10.1515/jgth.2003.008
    • Vancouver

      Jespers E, Juriaans OS. The finite conjugacy centre of the unit group of integral group rings [Internet]. Journal of Group theory. 2003 ; 6( 1): 93-102.Available from: https://doi.org/10.1515/jgth.2003.008
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley; DE MIRANDA, João Montenegro; ROGÉRIO, José Robério. On the normalizer problem. Journal of Algebra[S.l.], v. 247, n. 1, p. 24-36, 2002. Disponível em: < https://doi.org/10.1006/jabr.2001.8724 > DOI: 10.1006/jabr.2001.8724.
    • APA

      Jespers, E., Juriaans, O. S., De Miranda, J. M., & Rogério, J. R. (2002). On the normalizer problem. Journal of Algebra, 247( 1), 24-36. doi:10.1006/jabr.2001.8724
    • NLM

      Jespers E, Juriaans OS, De Miranda JM, Rogério JR. On the normalizer problem [Internet]. Journal of Algebra. 2002 ; 247( 1): 24-36.Available from: https://doi.org/10.1006/jabr.2001.8724
    • Vancouver

      Jespers E, Juriaans OS, De Miranda JM, Rogério JR. On the normalizer problem [Internet]. Journal of Algebra. 2002 ; 247( 1): 24-36.Available from: https://doi.org/10.1006/jabr.2001.8724
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. Isomorphisms of integral group rings of infinite groups. Journal of Algebra[S.l.], v. 223, n. 1, p. 171-189, 2000. Disponível em: < https://doi.org/10.1006/jabr.1999.7989 > DOI: 10.1006/jabr.1999.7989.
    • APA

      Jespers, E., & Juriaans, O. S. (2000). Isomorphisms of integral group rings of infinite groups. Journal of Algebra, 223( 1), 171-189. doi:10.1006/jabr.1999.7989
    • NLM

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups [Internet]. Journal of Algebra. 2000 ; 223( 1): 171-189.Available from: https://doi.org/10.1006/jabr.1999.7989
    • Vancouver

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups [Internet]. Journal of Algebra. 2000 ; 223( 1): 171-189.Available from: https://doi.org/10.1006/jabr.1999.7989
  • Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; JURIAANS, Orlando Stanley. Isomorphisms of integral group rings of infinite groups. [S.l: s.n.], 1998.
    • APA

      Jespers, E., & Juriaans, O. S. (1998). Isomorphisms of integral group rings of infinite groups. São Paulo: IME-USP.
    • NLM

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups. 1998 ;
    • Vancouver

      Jespers E, Juriaans OS. Isomorphisms of integral group rings of infinite groups. 1998 ;
  • Source: Canadian Mathematical Bulletin. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric; LEAL, Guilherme; POLCINO MILIES, Francisco César. Units integral group rings of some metacyclic groups. Canadian Mathematical Bulletin, Ottawa, Canadian Mathematical Society, v. 37, n. ju 1994, p. 228-237, 1994. Disponível em: < https://doi.org/10.4153/CMB-1994-034-0 > DOI: 10.4153/cmb-1994-034-0.
    • APA

      Jespers, E., Leal, G., & Polcino Milies, F. C. (1994). Units integral group rings of some metacyclic groups. Canadian Mathematical Bulletin, 37( ju 1994), 228-237. doi:10.4153/cmb-1994-034-0
    • NLM

      Jespers E, Leal G, Polcino Milies FC. Units integral group rings of some metacyclic groups [Internet]. Canadian Mathematical Bulletin. 1994 ; 37( ju 1994): 228-237.Available from: https://doi.org/10.4153/CMB-1994-034-0
    • Vancouver

      Jespers E, Leal G, Polcino Milies FC. Units integral group rings of some metacyclic groups [Internet]. Canadian Mathematical Bulletin. 1994 ; 37( ju 1994): 228-237.Available from: https://doi.org/10.4153/CMB-1994-034-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021