Filtros : "Guaschi, John" Limpar

Filtros



Refine with date range


  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, Cham, v. 21, n. 2, p. 1-29, 2019. Disponível em: < http://dx.doi.org/10.1007/s11784-019-0693-z > DOI: 10.1007/s11784-019-0693-z.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; OCAMPO, Oscar. Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, New York, v. 524, p. 160-186, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2019.01.010 > DOI: 10.1016/j.jalgebra.2019.01.010.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2019). Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, 524, 160-186. doi:10.1016/j.jalgebra.2019.01.010
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.01.010
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.01.010
  • Source: Indagationes Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, Amsterdam, v. 29, n. 1, p. 91-124, 2018. Disponível em: < https://dx.doi.org/10.1016/j.indag.2017.03.003 > DOI: 10.1016/j.indag.2017.03.003.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2018). Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, 29( 1), 91-124. doi:10.1016/j.indag.2017.03.003
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.Available from: https://dx.doi.org/10.1016/j.indag.2017.03.003
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.Available from: https://dx.doi.org/10.1016/j.indag.2017.03.003
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS, COHOMOLOGIA DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2. Pacific Journal of Mathematics[S.l.], v. 287, n. 1, p. 71-99, 2017. Disponível em: < http://dx.doi.org/10.2140/pjm.2017.287.71 > DOI: 10.2140/pjm.2017.287.71.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2. Pacific Journal of Mathematics, 287( 1), 71-99. doi:10.2140/pjm.2017.287.71
    • NLM

      Gonçalves DL, Guaschi J. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2 [Internet]. Pacific Journal of Mathematics. 2017 ; 287( 1): 71-99.Available from: http://dx.doi.org/10.2140/pjm.2017.287.71
    • Vancouver

      Gonçalves DL, Guaschi J. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2 [Internet]. Pacific Journal of Mathematics. 2017 ; 287( 1): 71-99.Available from: http://dx.doi.org/10.2140/pjm.2017.287.71
  • Source: Chinese Annals of Mathematics, Series B. Unidade: IME

    Subjects: HOMOTOPIA, ESPAÇOS FIBRADOS, BRAIDS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, Heidelberg, v. 38, n. 6, p. 1223-1246, 2017. Disponível em: < https://dx.doi.org/10.1007/s11401-017-1033-5 > DOI: 10.1007/s11401-017-1033-5.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, 38( 6), 1223-1246. doi:10.1007/s11401-017-1033-5
    • NLM

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.Available from: https://dx.doi.org/10.1007/s11401-017-1033-5
    • Vancouver

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.Available from: https://dx.doi.org/10.1007/s11401-017-1033-5
  • Source: Journal of Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; OCAMPO, Oscar. A quotient of the Artin braid groups related to crystallographic groups. Journal of Algebra, New York, v. 474, p. 393-423, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2016.11.003 > DOI: 10.1016/j.jalgebra.2016.11.003.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2017). A quotient of the Artin braid groups related to crystallographic groups. Journal of Algebra, 474, 393-423. doi:10.1016/j.jalgebra.2016.11.003
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. A quotient of the Artin braid groups related to crystallographic groups [Internet]. Journal of Algebra. 2017 ; 474 393-423.Available from: http://dx.doi.org/10.1016/j.jalgebra.2016.11.003
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. A quotient of the Artin braid groups related to crystallographic groups [Internet]. Journal of Algebra. 2017 ; 474 393-423.Available from: http://dx.doi.org/10.1016/j.jalgebra.2016.11.003
  • Source: Science China Mathematics. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach. Science China Mathematics, Beijing, v. 60, n. 9, p. 1561-1574, 2017. Disponível em: < http://dx.doi.org/10.1007/s11425-017-9080-x > DOI: 10.1007/s11425-017-9080-x.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach. Science China Mathematics, 60( 9), 1561-1574. doi:10.1007/s11425-017-9080-x
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach [Internet]. Science China Mathematics. 2017 ; 60( 9): 1561-1574.Available from: http://dx.doi.org/10.1007/s11425-017-9080-x
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach [Internet]. Science China Mathematics. 2017 ; 60( 9): 1561-1574.Available from: http://dx.doi.org/10.1007/s11425-017-9080-x
  • Unidade: IME

    Subjects: BRAIDS, TEORIA DOS GRUPOS, TOPOLOGIA DE DIMENSÃO BAIXA, VARIEDADES TOPOLÓGICAS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The classification of the virtually cyclic subgroups of the sphere braid groups. [S.l: s.n.], 2013.Disponível em: DOI: 10.1007/978-3-319-00257-6.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). The classification of the virtually cyclic subgroups of the sphere braid groups. New York: Springer. doi:10.1007/978-3-319-00257-6
    • NLM

      Gonçalves DL, Guaschi J. The classification of the virtually cyclic subgroups of the sphere braid groups [Internet]. 2013 ;Available from: http://dx.doi.org/10.1007/978-3-319-00257-6
    • Vancouver

      Gonçalves DL, Guaschi J. The classification of the virtually cyclic subgroups of the sphere braid groups [Internet]. 2013 ;Available from: http://dx.doi.org/10.1007/978-3-319-00257-6
  • Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OCAMPO URIBE, Oscar Eduardo; GONÇALVES, Daciberg Lima; GUASCHI, John. Grupos de tranças brunianas e grupos de homotopia da esfera S2. 2013.Universidade de São Paulo, São Paulo, 2013. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27092013-115220 >.
    • APA

      Ocampo Uribe, O. E., Gonçalves, D. L., & Guaschi, J. (2013). Grupos de tranças brunianas e grupos de homotopia da esfera S2. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27092013-115220
    • NLM

      Ocampo Uribe OE, Gonçalves DL, Guaschi J. Grupos de tranças brunianas e grupos de homotopia da esfera S2 [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27092013-115220
    • Vancouver

      Ocampo Uribe OE, Gonçalves DL, Guaschi J. Grupos de tranças brunianas e grupos de homotopia da esfera S2 [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27092013-115220
  • Source: Journal of Group Theory. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane. Journal of Group Theory, Berlin, v. 13, n. 2, p. 277-294, 2013. Disponível em: < http://dx.doi.org/10.1515/JGT.2009.040 > DOI: 10.1515/JGT.2009.040.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane. Journal of Group Theory, 13( 2), 277-294. doi:10.1515/JGT.2009.040
    • NLM

      Gonçalves DL, Guaschi J. Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane [Internet]. Journal of Group Theory. 2013 ; 13( 2): 277-294.Available from: http://dx.doi.org/10.1515/JGT.2009.040
    • Vancouver

      Gonçalves DL, Guaschi J. Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane [Internet]. Journal of Group Theory. 2013 ; 13( 2): 277-294.Available from: http://dx.doi.org/10.1515/JGT.2009.040
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift[S.l.], v. 274, p. 667-683, 2013. Disponível em: < http://dx.doi.org/10.1007/s00209-012-1090-0 > DOI: 10.1007/s00209-012-1090-0.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift, 274, 667-683. doi:10.1007/s00209-012-1090-0
    • NLM

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.Available from: http://dx.doi.org/10.1007/s00209-012-1090-0
    • Vancouver

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.Available from: http://dx.doi.org/10.1007/s00209-012-1090-0
  • Source: Journal of London Mathematical Society. Unidade: IME

    Assunto: GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Surface braid groups and coverings. Journal of London Mathematical Society, London, v. 85, n. 3, p. 855-868, 2012. Disponível em: < http://dx.doi.org/10.1112/jlms/jdr071 > DOI: 10.1112/jlms/jdr071.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2012). Surface braid groups and coverings. Journal of London Mathematical Society, 85( 3), 855-868. doi:10.1112/jlms/jdr071
    • NLM

      Gonçalves DL, Guaschi J. Surface braid groups and coverings [Internet]. Journal of London Mathematical Society. 2012 ; 85( 3): 855-868.Available from: http://dx.doi.org/10.1112/jlms/jdr071
    • Vancouver

      Gonçalves DL, Guaschi J. Surface braid groups and coverings [Internet]. Journal of London Mathematical Society. 2012 ; 85( 3): 855-868.Available from: http://dx.doi.org/10.1112/jlms/jdr071
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The lower central and derived series of the braid groups of the projective plane. Journal of Algebra, Amsterdam, v. 331, n. 1, p. 96-129, 2011. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2010.12.007 > DOI: 10.1016/j.jalgebra.2010.12.007.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2011). The lower central and derived series of the braid groups of the projective plane. Journal of Algebra, 331( 1), 96-129. doi:10.1016/j.jalgebra.2010.12.007
    • NLM

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the projective plane [Internet]. Journal of Algebra. 2011 ; 331( 1): 96-129.Available from: http://dx.doi.org/10.1016/j.jalgebra.2010.12.007
    • Vancouver

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the projective plane [Internet]. Journal of Algebra. 2011 ; 331( 1): 96-129.Available from: http://dx.doi.org/10.1016/j.jalgebra.2010.12.007
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence. Journal of Pure and Applied Algebra[S.l.], v. 214, n. 5, p. 667-677, 2010. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2009.07.009 > DOI: 10.1016/j.jpaa.2009.07.009.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2010). Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence. Journal of Pure and Applied Algebra, 214( 5), 667-677. doi:10.1016/j.jpaa.2009.07.009
    • NLM

      Gonçalves DL, Guaschi J. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence [Internet]. Journal of Pure and Applied Algebra. 2010 ; 214( 5): 667-677.Available from: http://dx.doi.org/10.1016/j.jpaa.2009.07.009
    • Vancouver

      Gonçalves DL, Guaschi J. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence [Internet]. Journal of Pure and Applied Algebra. 2010 ; 214( 5): 667-677.Available from: http://dx.doi.org/10.1016/j.jpaa.2009.07.009
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications[S.l.], v. 157, n. 10-11, p. 1742-1759, 2010. Disponível em: < http://dx.doi.org/10.1016/j.topol.2010.02.024 > DOI: 10.1016/j.topol.2010.02.024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2010). The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications, 157( 10-11), 1742-1759. doi:10.1016/j.topol.2010.02.024
    • NLM

      Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.Available from: http://dx.doi.org/10.1016/j.topol.2010.02.024
    • Vancouver

      Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.Available from: http://dx.doi.org/10.1016/j.topol.2010.02.024
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Assunto: TEORIA GEOMÉTRICA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The lower central and derived series of the braid groups of the sphere. Transactions of the American Mathematical Society[S.l.], v. 361, n. 7, p. 3375-3399, 2009. Disponível em: < https://doi.org/10.1090/S0002-9947-09-04766-7 > DOI: 10.1090/S0002-9947-09-04766-7.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2009). The lower central and derived series of the braid groups of the sphere. Transactions of the American Mathematical Society, 361( 7), 3375-3399. doi:10.1090/S0002-9947-09-04766-7
    • NLM

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the sphere [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 7): 3375-3399.Available from: https://doi.org/10.1090/S0002-9947-09-04766-7
    • Vancouver

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the sphere [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 7): 3375-3399.Available from: https://doi.org/10.1090/S0002-9947-09-04766-7
  • Source: Journal of Knot Theory and its Ramifications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The lower central and derived series of the braid groups of the finitely-punctured sphere. Journal of Knot Theory and its Ramifications[S.l.], v. 18, n. 5, p. 651-704, 2009. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218216509007117 > DOI: 10.1142/S0218216509007117.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2009). The lower central and derived series of the braid groups of the finitely-punctured sphere. Journal of Knot Theory and its Ramifications, 18( 5), 651-704. doi:10.1142/S0218216509007117
    • NLM

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the finitely-punctured sphere [Internet]. Journal of Knot Theory and its Ramifications. 2009 ; 18( 5): 651-704.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218216509007117
    • Vancouver

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the finitely-punctured sphere [Internet]. Journal of Knot Theory and its Ramifications. 2009 ; 18( 5): 651-704.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218216509007117
  • Source: Algebraic & Geometric Topology. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebraic & Geometric Topology[S.l.], v. 8, n. 2, p. 757-785, 2008. Disponível em: < http://dx.doi.org/10.2140/agt.2008.8.757 > DOI: 10.2140/agt.2008.8.757.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2008). The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebraic & Geometric Topology, 8( 2), 757-785. doi:10.2140/agt.2008.8.757
    • NLM

      Gonçalves DL, Guaschi J. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups [Internet]. Algebraic & Geometric Topology. 2008 ; 8( 2): 757-785.Available from: http://dx.doi.org/10.2140/agt.2008.8.757
    • Vancouver

      Gonçalves DL, Guaschi J. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups [Internet]. Algebraic & Geometric Topology. 2008 ; 8( 2): 757-785.Available from: http://dx.doi.org/10.2140/agt.2008.8.757
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The quaternion group as a subgroup of the sphere braid groups. Bulletin of the London Mathematical Society, London, v. 39, n. 2, p. 232-234, 2007. Disponível em: < https://doi.org/10.1112/blms/bdl041 > DOI: 10.1112/blms/bdl041.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2007). The quaternion group as a subgroup of the sphere braid groups. Bulletin of the London Mathematical Society, 39( 2), 232-234. doi:10.1112/blms/bdl041
    • NLM

      Gonçalves DL, Guaschi J. The quaternion group as a subgroup of the sphere braid groups [Internet]. Bulletin of the London Mathematical Society. 2007 ; 39( 2): 232-234.Available from: https://doi.org/10.1112/blms/bdl041
    • Vancouver

      Gonçalves DL, Guaschi J. The quaternion group as a subgroup of the sphere braid groups [Internet]. Bulletin of the London Mathematical Society. 2007 ; 39( 2): 232-234.Available from: https://doi.org/10.1112/blms/bdl041
  • Source: Geometriae Dedicata. Unidade: IME

    Assunto: GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence. Geometriae Dedicata, Dordrecht, v. 130, n. 1, p. 93-107, 2007. Disponível em: < https://doi.org/10.1007/s10711-007-9207-z > DOI: 10.1007/s10711-007-9207-z.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2007). The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence. Geometriae Dedicata, 130( 1), 93-107. doi:10.1007/s10711-007-9207-z
    • NLM

      Gonçalves DL, Guaschi J. The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence [Internet]. Geometriae Dedicata. 2007 ; 130( 1): 93-107.Available from: https://doi.org/10.1007/s10711-007-9207-z
    • Vancouver

      Gonçalves DL, Guaschi J. The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence [Internet]. Geometriae Dedicata. 2007 ; 130( 1): 93-107.Available from: https://doi.org/10.1007/s10711-007-9207-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021